Achieving the maximum performance of the resolution of the identity approximation in the Hartree-Fock method

Iu. V. Kashpurovich A. V. Oleynichenko V. V. Stegailov

Joint Institute for High Temperatures Moscow Institute of Physics and Technology Petersburg Nuclear Physics Institute - "Kurchatov Institute" Higher School of Economics

> kashpurovich.iuv@phystech.edu oleynichenko_av@pnpi.nrcki.ru

Parallel Computational Technologies 2025 8 April, 2025

• • = • • = •

Метод Хартри-Фока (RHF)

$$\hat{H}_{e}(r_{1},...,r_{N})\psi(x_{1},...,x_{N}) = E_{e}(R_{1},...,R_{K})\psi(x_{1},...,x_{N})$$
 (1)

$$\psi_{\rm m}({\rm x}_1,\ldots,{\rm x}_{\rm N}) \approx \Phi_{0_{\rm m}}({\rm x}_1,\ldots,{\rm x}_{\rm N}) = \frac{1}{\sqrt{{\rm N}!}} \begin{vmatrix} \varphi_1({\rm x}_1) & \ldots & \varphi_1({\rm x}_{\rm N}) \\ \vdots & \vdots \\ \varphi_{\rm N}({\rm x}_1) & \ldots & \varphi_{\rm N}({\rm x}_{\rm N}) \end{vmatrix}$$
(2)

$$\hat{\mathbf{F}}[\varphi_1, \dots, \varphi_N]\varphi_i(\mathbf{x}) = \varepsilon_i \varphi_i(\mathbf{x}) \qquad \varphi_i(\mathbf{r}) = \sum_{\mu=1}^{N_{AO}} C_{\mu i} \chi_\mu(\mathbf{r}) \qquad \mathbf{F}_{\mu\nu} = \mathbf{H}_{\mu\nu} + 2\mathbf{J}_{\mu\nu} - \mathbf{K}_{\mu\nu} \quad (3)$$

$$D_{\mu\nu} = \sum_{i=1}^{N_{occ}} C_{i\mu} C_{i\nu}; \qquad J_{\mu\nu} = \sum_{\rho,\sigma} D_{\rho\sigma}(\mu\nu|\rho\sigma), \quad K_{\mu\nu} = \sum_{\rho,\sigma} D_{\rho\sigma}(\mu\sigma|\rho\nu)$$
(4)

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回>

Приближение разложения единицы

$$(\mu\nu|\rho\sigma) = \int \frac{\chi_{\mu}(\mathbf{r}_{1})\chi_{\nu}(\mathbf{r}_{2})\chi_{\rho}(\mathbf{r}_{2})\chi_{\sigma}(\mathbf{r}_{2})}{|\mathbf{r}_{1}-\mathbf{r}_{2}|} d\mathbf{r}_{1}d\mathbf{r}_{2}, \qquad (5)$$

$$J_{\mu\nu} = \sum_{\rho,\sigma} \sum_{B,C}^{N_{AO}} \sum_{D,\sigma}^{N_{aux}} D_{\rho\sigma}(\mu\nu|B)(V^{-1})_{BC}(\rho\sigma|C) \quad K_{\mu\nu} = \sum_{\rho,\sigma} \sum_{B,C}^{N_{AO}} \sum_{D,\sigma}^{N_{aux}} D_{\rho\sigma}(\mu\sigma|B)(V^{-1})_{BC}(\rho\nu|C) \quad (6)$$

$$\widetilde{(\mu\nu|P)} = \sum_{B} A_{PB}^{\top}(\mu\nu|B)(\widetilde{V}^{-1/2})_{PP}, \qquad (7)$$

$$3c2e$$

$$0 \quad O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}N_{aux}) O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}N_{aux}^{2}) O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{aux}) + O(N_{occ}N_{AO}^{2}N_{aux}) = O(N_{AO}^{2}N_{AO}^$$

Kashpurovich, Oleynichenko, Stegailov

$$D_{B} = \sum_{\rho,\sigma} D_{\rho\sigma}(\rho\sigma|C) \quad \tilde{D}_{B} = \sum_{C} (V^{-1})_{BC} D_{B} \quad J_{\mu\nu} = \sum_{B} (\mu\nu|B)\tilde{D}_{B}$$
(8)
$$\tilde{D}_{P} = \sum_{\rho,\sigma} D_{\rho\sigma}(\rho\sigma|P) \quad J_{\mu\nu} = \sum_{P} (\rho\sigma|P)\tilde{D}_{P}$$
(9)

111	1 <mark>12</mark>		1 1N_{AO}		1 N_{AO}1	1 N_{AO}2		1 <i>N_{AO}N_{AO}</i>
211	2 12		21 N_{AO}		2 <mark>//</mark> _A0	2 N_{AO}2		2N _{AO} N _{AO}
:	:	÷.,	:	<u>ъ</u> ,	:	:	÷.	:
N _{aux} 11	N _{aux} 12		N _{aux} 1N _{AO}		N _{aux} N _{AO} 1	N _{aux} N _{AO} 2		N _{aux} N _{AO} N _{AO}

Рис.: Одно из представлений RI-тензора

Kashpurovich	Oleynic	henko, S	Stegailov
--------------	---------	----------	-----------

ヨト・モート

$$D_{\mu\nu} = \sum_{i} C_{i\mu} C_{i\nu} \quad \widetilde{(i\mu|P)} = \sum_{\sigma} C_{i\sigma} \widetilde{(\sigma\mu|P)} \quad \widetilde{(i\mu|P)} \longrightarrow \widetilde{(\mu i|P)} \quad K_{\mu\nu} = \sum_{i,P} \widetilde{(\mu i|P)} \widetilde{(\nu i|P)}$$

				111	112		11 <i>N</i>			110		
				:	1	5	:		111	112		11N _{aux}
									÷	1		E
				1 <i>N</i> _{AO} 1	1 <i>N</i> _{AO} 2		$1N_{AO}N_{aux}$		1N_01	1N ₄₀ 2		1N_0N_0
C ₁₁	C ₁₂		C _{1NAO}	211	212		21N _{aux}		211	212		21 <i>N</i> _aux
C ₂₁	C ₂₂		C _{2NAO}	1	1	196	1		1	I	196	i
i	÷	196	: ^	2N _{AO} 1	2N _{AO} 2		2N _{AO} N _{aux}		2N _{AO} 1	2N _{AO} 2		2N _{AO} N _{aux}
C	C		C	1	1	196	1		1	1		1
-N _{occ} 1	N _{occ} 2		- N OCC NAO	N _{AO} 11	N _{AO} 12		N _{AO} 1N _{aux}		N _{occ} 11	N _{occ} 12		$N_{\rm occ} 1 N_{\rm aux}$
				1	1	1.5	1	11	÷	1	1.26	÷
				NAONAO1	NAONAO2		NAONAON		$N_{\rm occ}N_{\rm AO}$ 1	$N_{\rm occ}N_{\rm AO}^2$		$N_{\rm occ}N_{\rm AO}N_{\rm aux}$

Рис.: Первый шаг схемы и row-major представление RI-тензора

イロト 不得 トイヨト イヨト

$$\widetilde{(\mathrm{i}\mu|\mathrm{P})} = \sum_{\sigma} \mathrm{C}_{\mathrm{i}\sigma} \widetilde{(\sigma\mu|\mathrm{P})} \quad \widetilde{(\mathrm{i}\mu|\mathrm{P})} \longrightarrow \widetilde{(\mu\mathrm{i}|\mathrm{P})} \quad \mathrm{K}_{\mu\nu} = \sum_{\mathrm{i},\mathrm{P}} \widetilde{(\mu\mathrm{i}|\mathrm{P})} \widetilde{(\nu\mathrm{i}|\mathrm{P})}$$

111	112		11N _{aux}	111	112		11N _{aux}
121	122		12N _{aux}	211	212		21N _{aux}
ł	E	26	1	E	:	- N	1
1N ₄₀ 1	1N ₄₀ 2		1N _{AO} N _{aux}	N _{occ} 11	N _{occ} 12		$N_{\rm occ} 1 N_{\rm aux}$
211	212		21N	121	122		12N _{aux}
221	222		22N	221	222		22N _{aux}
÷	:	5	i	÷.	1	196	÷.
2N ₁₀ 1	2N, 2		2N, N	N _{occ} 21	N _{occ} 22		N _{occ} 2N _{aux}
:	i	<u>8</u>	i	ł	I		1
N _{occ} 11	N _{occ} 12		N _{occ} 1N _{aux}	1N ₄₀ 1	1N ₄₀ 2		
N _{occ} 21	N _{occ} 22		N _{occ} 2N _{aux}	2N _{AO} 1	2N _{AO} 2		2N _{AO} N _{aux}
1	1		1	1	1	196	1
$N_{\rm occ}N_{\rm AO}$ 1	N _{occ} N _{AO} 2		N _{occ} N _{AO} N _{aux}	$N_{\rm occ}N_{\rm AO}$ 1	N _{occ} N _{AO} 2		N _{occ} N _{AO} N _{aux}

Рис.: Второй шаг схемы для row-major представления $(i\mu|P)$

э

$$D_{\mu\nu} = \sum_{i} C_{i\mu} C_{i\nu} \quad \widetilde{(\mu i|P)} = \sum_{\sigma} C_{i\sigma} \widetilde{(\mu\sigma|P)} \quad K_{\mu\nu} = \sum_{i,P} \widetilde{(\mu i|P)} \widetilde{(\nu i|P)}$$

			111	112		11N _{aux}	444	110		11.11
			-	1	1.5	1	111	112		11/V _{aux}
			1/ 1	11/ 2		1.01 .01		1	- 14	1
-	-		I VAO I	IIV AOZ		AO ¹ aux	1N _{occ} 1	1 <i>N</i> _{occ} 2		1N _{occ} N _{aux}
C ₁₁	C ₁₂	 C _{1NAO}	211	212		21N _{aux}	211	212		21N
C ₂₁	C ₂₂	C _{2NAO}	>	i.	$= N_{\rm eff}$:	54	:
÷	÷	i	2N _{AO} 1	2N _{AO} 2		2N _{AO} N _{aux}	- 2N _{occ} 1	2N _{occ} 2		2N _{occ} N _{aux}
C., ,	C., .	 C., .,	1	1	1.5	1	:	:	26	÷.
- N ₀₀₀ 1	- N ₀₀₀ 2	- N _{occ} NAO	N _{AO} 11	N _{AO} 12		N _{AO} 1N _{aux}	N _{AO} 11	N _{AO} 12		N _{AO} 1N _{aux}
			► I	1	- N.	1	1	:	5	:
			N _{AO} N _{AO} 1	N _{AO} N _{AO} 2		N _{AO} N _{AO} N _{aux}	N _{AO} N _{occ} 1	N _{AO} N _{occ} 2		N _{AO} N _{occ} N _{aux}

Рис.: Первый шаг схемы и row-major представление RI-тензора

э

$$D_{\mu\nu} = \sum_{i} C_{i\mu} C_{i\nu} \quad \widetilde{(\mu i | P)} = \sum_{\sigma} C_{i\sigma} \widetilde{(\mu \sigma | P)} \quad K_{\mu\nu} = \sum_{i,P} \widetilde{(\mu i | P)} \widetilde{(\nu i | P)}$$

Рис.: Первый шаг схемы и col-major представление RI-тензора

Дизайн алгоритма: перестановочная симметрия RI-тензора

	111	112		11N _{aux}		111	112		11 <i>N</i>	2 11	1 11	1 12		1 1(<i>N</i> _{AO} -1)	1 1 <i>N</i> _{AO}
1	121	122		12N _{aux}	- 1	121	122		12N	2 21	2 22	122		12(N _{AO} -1)	12N _{AO}
11			- 56	1	- 1	:	:		AO	2 31	2 32	2 33	$\sim 20^{-1}$	1 3(<i>N</i> _{AO} -1)	1 3 <i>N</i> _{AO}
¥.	1 <i>N</i> _{AO} 1	1 <i>N</i> _{AO} 2		1N _{AO} N _{aux}	- 8	1.01 1	4.11.0		4.61 .61	:	:	:	1	- N	
	211	212		21N _{aux}		1/V _{AO} 1	1N _{AO} Z		1N _{AO} N _{AO}	2N, 1	2N,_2	2N3		2N. N.O	1N _{AO} N _{AO}
	221	222		22N _{aux}	- 1	211	212		21 <i>N</i> _{AO}	AU	AU	A0		AU AU	
11			1.5	I		221	222		22N _{AO}	411	311	312		31(N _{AO} -1)	31N _{AO}
X	2N.01	2N, 2		2N. N.	- 1	1	:	N.	1	4 21	422	3 22		3 2(<i>N</i> _{AO} -1)	3 2 <i>N</i> _{AO}
	311	312		31N	- 1	2N_1	2N 2		2N N	431	432	4 33	$\sim N_{\odot}$	3 3(<i>N</i> _{AO} -1)	3 3N _{AO}
1	321	322		32N		AO	LI AOL	-	AO' AO	I			196	N	
				aux		÷	i.		1	4 N _{AO} 1	4N _{AO} 2	4 N _{AO} 3		4N _{AO} N _{AO}	3N _{AO} N _{AO}
				i	. 1					1	÷	1	1	1	÷

Рис.: Исследуемые упорядоченные представления RI-тензора

 $Kashpurovich,\ Oleynichenko,\ Stegailov$

< □ > < □ > < □ > < ≡ > < ≡ >
 8 April, 2025

Дизайн алгоритма: перестановочная симметрия RI-тензора

(b)

							V		
C ₁₁	C ₁₂		C _{1Nac}	2 11	1 11	1 12		1 1(<i>N</i> _{AO} -1)	1 1 <i>N</i> _{AO}
Cat	Caa		Can	2 21	2 22	122		1 2(<i>N</i> _{AO} -1)	12N _{AO}
21	1	- N.	2/NAO	2 31	2 32	2 33	$= 2 k_{\rm e}$	1 3(<i>N</i> _{AO} -1)	13N _{AO}
~	C		C	1	1	1	$(2n_{i})$	1997 - N. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	1
Nocc 1	U _{Nocc} 2		Noce NAO	2 N _{AO} 1	2N,02	2N_03		2N_0N_0	1N _{AO} N _{AO}
				1					

Рис.: Модифицирование (а) RI-J и (b) RI-К алгоритмов

Kashpurovich, Oleynichenko, Stegailov

RI-SCF

8 April, 2025

Basis

AO: def2-TZVP

Computational Node AMD EPYC 7302 16-core CPU

2 AUX: def2-TZVP-RIFIT

 Рис.: Распределение времени исполнения этапов алгоритма метода Хартри-Фока (три однопоточные версии)

 (П)
 (П)

Тестирование: асимптотическая сложность (C₁₀H₁₂–C₆₀H₆₂)

Тестирование: масштабируемость предварительного преобразования

Тестирование: масштабируемость итерации алгоритма метода RHF

Kashpurovich, Oleynichenko, Stegailov

8 April, 2025

Прекрасная реальность:

- Разработано несколько схем параллельного исполнения алгоритма метода Хартри-Фока
- Установлено влияние различных макетов памяти на скорость алгоритма
- Предложен и реализован эффективный способ учёта перестановочной симметрии

Светлое будущее:

- Более эффективное кэширование матричных вычислений
- 2 NUMA-aware MPI/OpenMP алгоритм
- 8 Учёт разреженности RI-тензора
- ④ Создание performance-portable кода

15 / 15