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This study presents the development of a predictive model for the specific heat capacity of 
nanofluids based on the Random Forest Regressor method, optimized using GridSearchCV. 
The final model parameters demonstrated high prediction accuracy (MSE = 4.16, R² = 
0.99999), as confirmed by residual analysis and comparison between actual and predicted 
values. The model was successfully tested on data for isopropyl alcohol with nanoparticles, 
showing minimal deviations from the experimental values. Despite limitations associated 
with the clustered structure of the data, the model exhibits potential for application to other 
base fluids and nanoparticles, making it a valuable tool for studying the thermophysical 
properties of nanofluids and developing new materials. 
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1. Introduction 

Nanofluids, consisting of nanoparticles suspended in base fluids, have garnered significant attention 
due to their enhanced thermophysical properties [1]. These fluids exhibit improved thermal conductivity 
and altered viscosity, making them promising for heat transfer applications [2]. Nanoparticle 
characteristics, such as concentration, size, and shape, significantly impact nanofluid properties and 
performance [3]. Metallic oxide nanoparticles like MgO, TiO₂, and ZnO can increase heat transfer 
efficiency by approximately 30% compared to base fluids [3]. Stability is crucial for nanofluid usability, 
with various methods employed to enhance it, including surfactant addition and ultrasonic mixing [3]. 
While increasing nanoparticle concentration can improve heat transfer efficiency, exceeding optimal 
levels may reduce Brownian motions due to higher viscosity and density [3]. Density, thermal 
conductivity, viscosity, and heat capacity are key parameters influencing nanofluid performance in heat 
transfer applications [4]. 

Recent studies highlight the growing importance of machine learning (ML) techniques in predicting 
thermophysical properties of nanofluids. These advanced computational methods have proven superior 
to traditional approaches in handling complex, non-linear relationships between nanofluid 
parameters [5, 6]. Various ML algorithms, including Artificial Neural Networks (ANNs), Support 
Vector Regression (SVR), and genetic algorithms, have been employed to accurately predict properties 
such as thermal conductivity, viscosity, and specific heat capacity [6–8]. The input parameters typically 
include temperature, concentration, nanoparticle size, and base fluid type [7, 6]. Researchers have found 
that extra trees and decision trees often provide the best results for estimating thermal conductivity and 
viscosity, respectively [7]. These ML methods offer efficient, rapid, and practical alternatives to 
experimental approaches, making them valuable tools for researchers and engineers in the field of 
nanofluids [8–11]. 

Machine learning techniques have emerged as powerful tools for predicting and optimizing 
nanofluid thermophysical properties, offering superior accuracy compared to traditional methods 
[12, 13]. Various approaches, including Artificial Neural Networks (ANNs), Support Vector Regression 
(SVR), and genetic algorithms, have demonstrated effectiveness in capturing the complex dynamics of 
nanofluids [12, 14]. These AI-based models excel at processing large datasets and identifying intricate 
patterns, making them particularly suitable for predicting properties such as thermal conductivity, 
viscosity, and specific heat capacity [14, 15]. The integration of machine learning with empirical data 
has shown promise in enhancing the efficiency and accuracy of predictions, outperforming classical 
approaches [12, 14]. This advancement in predictive capabilities facilitates the optimization of nanofluid 
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compositions for specific technical applications, marking a significant step forward in thermal 
engineering and management [12, 15]. 

Recent research highlights the potential of machine learning in nanofluid design and analysis. A 
novel machine learning framework coupled with molecular dynamics methods has been proposed to 
model multi-component mixing nanofluidic systems, significantly reducing computational costs and 
improving prediction accuracy for surfactant adsorption properties and heat transfer performance [16]. 
Machine learning techniques have been shown to efficiently predict thermophysical properties of 
nanofluids, offering advantages over experimental methods [13]. Various machine learning algorithms, 
including artificial neural networks, genetic algorithms, and ensemble techniques like Boosted 
regression and XGBoost, have been applied to nanofluid-based heat transfer studies in renewable energy 
systems [17]. In a specific study on ethylene glycol- and glycerol-based SiO2 nanofluids, decision tree-
based models performed well in predicting thermal performance, with random forest and extreme 
gradient boosting models also showing high accuracy [18]. These advancements demonstrate the 
growing importance of machine learning in nanofluid research and applications. 

The aim of this study is to develop and optimize a predictive model for estimating the specific heat 
capacity of nanofluids using the Random Forest Regressor method. The relevance of this work is driven 
by the widespread application of nanofluids in various fields, including heat exchange systems, energy 
technologies, and cooling systems, where accurate knowledge of their thermophysical properties plays 
a critical role. However, the experimental determination of specific heat capacity is often associated 
with significant time and resource costs, making predictive models a promising tool for addressing this 
challenge. 

The research addresses the following objectives: analyzing data on the specific heat capacity of 
various nanofluids, developing a predictive model based on the Random Forest Regressor method, 
optimizing its hyperparameters using the GridSearchCV method, and evaluating the model's accuracy 
using standard metrics (MSE, R²). Additionally, the model is tested on new data, including experimental 
values for isopropyl alcohol with Al₂O₃ nanoparticles, to assess its applicability and generalizability. 
Particular attention is given to analyzing the model's limitations related to data clustering and its 
potential adaptation for other base fluids and types of nanoparticles. 

The findings of this study may contribute to accelerating the development of new nanofluids with 
desired thermophysical properties and enhancing the understanding of heat transfer mechanisms in such 
systems. 

2. Methods 

In the study, data on nanofluids were used, which are available in the dataset on the Kaggle 
platform [19]. This dataset contains information on various properties of nanofluids, including 
parameters such as nanoparticle size, nanoparticle composition, concentration, temperature, type of base 
fluid, and specific heat capacity. The objective of this research is to predict the specific heat capacity of 
nanofluids based on these properties. 

At the first stage, data preprocessing was performed. The first two columns, containing categorical 
data unrelated to numerical values, were removed from the dataset, and all missing commas were 
replaced with periods. This resulted in a cleaned sample suitable for further analysis. Outliers were also 
removed. To analyze the distribution of the data, plots were created to display the distribution of various 
characteristics of the nanofluids (Fig. 1).  

At the first stage, data preprocessing was performed. The first two columns, containing categorical 
data unrelated to numerical values, were removed from the dataset, and all missing commas were 
replaced with periods. This resulted in a cleaned sample suitable for further analysis. Outliers were also 
removed. To analyze the distribution of the data, plots were created to display the distribution of various 
characteristics of the nanofluids (Fig. 1).  
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Fig. 1. Distribution of variables in the processed dataset 

To gain a deeper understanding of the relationships between the different characteristics of 
nanofluids, a correlation analysis between the features was conducted. To assess the degree of 
association between the variables, a Pearson correlation analysis was performed, which quantitatively 
evaluates the linear relationship between numerical features. As a result, correlation matrices were 
obtained, clearly illustrating the degree of interconnection between all the variables. For a more visual 
representation of the correlations, a heatmap was created, displaying the correlation coefficients between 
all features in the dataset. The most highly correlated features are the heat capacity of the nanofluid and 
the heat capacity of the base fluid (Fig. 2).  

To train the model and assess its performance, the data was split into two parts: a training set and a test 
set. The standard train_test_split function from the sklearn library was used to randomly divide the data, with 
80% of the data allocated for training the model and the remaining 20% for testing. The target variable 
selected was the nanofluid specific heat capacity, which is predicted based on other features. To ensure that 
the variables were evenly distributed across the samples, distribution plots were created (Fig. 3). 

 
Fig. 2. Correlation matrix of variables in the studied dataset 
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Fig. 3. Distribution plots for the test and training datasets 

 
For the correct functioning of the model, all numerical features were standardized using the 

StandardScaler method. This step was necessary because different features may have varying scales (for 
example, temperature and density), which could impact the model's performance. 

To predict the specific heat capacity, the RandomForestRegressor method was chosen. This 
algorithm is well-suited for regression tasks as it can model complex relationships between features and 
the target variable without making assumptions about the data's distribution. The Random Forest model 
constructs an ensemble of decision trees and uses the average of their predictions to produce a more 
accurate result. 

To improve model performance, hyperparameter tuning was performed using GridSearchCV. This 
technique helps find the optimal parameters for the model, such as the number of trees in the forest 
(n_estimators), the maximum depth of the trees (max_depth), the minimum number of samples required 
to split a node (min_samples_split), and others. This enhances the model’s accuracy and prevents 
overfitting. 

During the training phase, cross-validation with 3 folds was employed for hyperparameter 
optimization, running the model 3600 times for 1200 different hyperparameter combinations. The best 
hyperparameters obtained after optimization were: max_depth=None, max_features=None, 
min_samples_leaf=1, min_samples_split=2, and n_estimators=42. 

After optimizing the hyperparameters, the Random Forest model showed excellent results on the 
test set, with a mean squared error (MSE) of 4.16 and a coefficient of determination (R²) of 0.99999, 
indicating extremely high prediction accuracy and the closeness of the predicted values to the actual 
data. 
Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
1
𝑛
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where 𝑦, — are the actual values, 𝑦./  — are the predicted values, and 𝑛 is the number of observations. 
Coefficient of Determination (R²): 
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where 𝑦 — is the mean of the actual values. 
These results indicate that the selected model with optimized parameters is capable of predicting 

the specific heat capacity of nanofluids with high accuracy based on the input features. 
To further improve the results and assess the possibility of applying other methods, a Gradient 

Boosting model based on the XGBoost algorithm was used. XGBoost is one of the most efficient 
methods for regression and classification tasks. Gradient Boosting helps reduce overfitting and improve 
prediction accuracy by sequentially training weak models, where each model corrects the errors of the 
previous one. For model tuning, the following parameter set was chosen: number of trees 
(n_estimators=1000), learning rate (learning_rate=0.01), and a fixed random state (random_state=80). 

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

11



 

 

3. Results 

The final parameters of the model's learning quality are as follows: the mean squared error (MSE) 
was 0.0138, the mean absolute error (MAE) was 0.0855, and the coefficient of determination (R²) 
reached a value of 0.9999999734. These results confirm the high accuracy of the heat capacity prediction 
for nanofluids, indicating the model's ability to precisely predict the system's behavior, even with 
minimal errors. 

To evaluate the prediction quality, several graphs were constructed. 
1. Comparison of actual and predicted values (Fig. 4): The first graph presents the real and 

predicted values of heat capacity. The line of perfect agreement, which runs diagonally, 
represents the theoretical accuracy of predictions. The graph demonstrates that the model 
provides predictions that are close to the actual values, which is further supported by the model's 
high accuracy. 

2. Residual distribution in Fig. 5: The second graph illustrates the distribution of residuals (the 
difference between actual and predicted values). The distribution is close to normal, indicating 
good model quality and the absence of systematic errors. The small magnitude of the standard 
deviation of the residuals further confirms this. 

 
Fig. 4. Visualization of Actual vs Predicted Values 

3. Residuals vs Predicted Values (Fig. 6): The third graph displays the distribution of residuals 
relative to the predicted values. The line positioned at zero helps to visually demonstrate that 
the residuals barely deviate from zero, further confirming the high accuracy of the model. 

 
Fig. 5. Visualization of Residuals 
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4. Residuals vs Predicted Values (Fig. 6): The third graph displays the distribution of residuals 
relative to the predicted values. The line positioned at zero helps to visually demonstrate that 
the residuals barely deviate from zero, further confirming the high accuracy of the model. 

 
Fig. 6. Residuals vs Predicted Values Plot 

 
Mean and Standard Deviation of Residuals: The mean value of the residuals was close to zero, and 

the standard deviation was very low, further confirming the high accuracy of the model's performance. 
Additionally, the model was tested on random experimental data obtained from the study “Effect 

of Al2O3 Nanoparticle Impurities on the Heat Capacity of Isopropyl Alcohol” [20]. The experimental 
data included various concentrations of nanoparticles in isopropyl alcohol, allowing for further 
validation of the model's applicability in real-world chemical systems. The following sample 
characteristics were used during the validation: 

● average particle size: 53 nm; 
● volume fraction of nanoparticles: 2%; 
● base fluid temperature: 293 K; 
● specific heat capacity of nanoparticles: 773 J/kg·K; 
● specific heat capacity of base fluid: 2400 J/kg·K. 

Using these data, the model predicted the specific heat capacity of the nanofluid to be 
2428.32 J/kg·K. This value was found to be close to the actual experimental data, confirming the high 
accuracy of the model's predictions. 

The results demonstrated that the model effectively predicts the heat capacity of isopropyl alcohol 
with Al2O3 nanoparticles, confirming its universality and precision. 

4. Conclusion 

The proposed solution for predicting the specific heat capacity of nanofluids, despite its high 
accuracy, still demonstrates some deviation from ideal results. This can be attributed to the fact that the 
initial dataset exhibits a clustered structure, which may affect the model's ability to generalize to new, 
previously unseen data. Nevertheless, the model achieves excellent performance on both test and 
experimental datasets, confirming its effectiveness in predicting the thermophysical properties of 
nanofluids. 

It is worth noting that the developed model for predicting the specific heat capacity of nanofluids, 
based on the current dataset, can be successfully applied to other fluids and nanoparticles not included 
in the original dataset. This opens up opportunities for its broader application in various fields, including 
the study of new materials and systems where accurate predictions of thermophysical properties are 
required. 

Future work will focus on expanding the current approach by increasing the size of the dataset and 
incorporating a wider range of input parameters. This is expected to enhance the model's quality and 
improve its generalization capabilities. Additionally, further research will involve comparing different 
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predictive models, including neural networks, which may potentially yield better results, particularly 
when working with larger and more diverse datasets. 

Thus, further improvement of the model and its adaptation to new types of data present promising 
prospects for developing even more accurate and versatile tools for predicting the thermophysical 
properties of nanofluids. 
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