
Research and optimization

pruning method in train process: DPIREC

D.A. Novikov, D.Y. Buryak

The faculty of Computational Mathematics and Cybernetics
of Lomonosov Moscow State University

This work focuses on the implementation and investigation of a novel pruning method
for deep convolutional neural networks, DPIREC (Dynamic Pruning by Importance
of Random Excluded Channels), which enables pruning directly during training. The
core idea of this method is to apply random masks to the channels of convolutional
layers during each training iteration, temporarily excluding certain channels from the
training process. Subsequently, the importance values of the channels used in the
current step are updated. Repeating these actions over multiple training epochs al-
lows the identification of channels with the least impact on the loss function, which
can then be permanently excluded from the pruned neural network. We conducted
a comprehensive analysis of approaches to assessing parameter relevance. Based on
this, a new approach was proposed that takes into account the dynamics of changes
in model accuracy. Comparative experiments demonstrated the superiority of the
DPIREC method over several existing techniques. When pruning the ResNet18 con-
volutional neural network during training on the CIFAR-100 dataset by 40%, the
accuracy loss was 0.89%.

Keywords: convolutional neural networks, dynamic pruning, structured pruning.

1. Introduction

Modern advancements in deep learning are driven not only by the development of numerous
novel neural network architectures and the engagement of a large number of specialists but also
by continuously increasing computational power. Deep neural networks can encompass dozens or
even hundreds of hidden layers, with each layer containing up to hundreds of neurons, resulting
in an immense number of parameters [1]. Training such networks has become feasible due to
the widespread availability of powerful parallel computing devices, such as GPUs (Graphics
Processing Units) and TPUs (Tensor Processing Unit) [2]. However, many users lack access to
high-performance computational resources equipped with thousands of CUDA cores.

Nevertheless, it is well-established that many parameters within a neural network are re-
dundant and exert minimal influence on the final outcome. This insight has inspired the concept
of reducing model weights and operations with minimal quality degradation. An alternative ap-
proach involves leveraging only those weights and operations that contribute most significantly
to the network’s performance. Furthermore, a body of research has demonstrated that removing
a small fraction of non-essential parameters can lead to improvements in test-set performance.
The process of removing redundant parameters aids in discarding noisy weights and disrupts
patterns that the network may have learned from training data but which do not generalize
across the entire data distribution [3, 4].

2. Related works

Pruning of neural networks is an optimization technique aimed at identifying and removing
parameters with minimal impact on the network’s accuracy [5]. This process involves employ-
ing various criteria to assess parameter significance, enabling precise determination of which
parameters can be excluded without noticeable degradation in the network’s performance. The
primary body of research on pruning is predominantly focused on convolutional neural networks

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

44

(CNNs), widely used for image classification tasks, which form the foundation for a broad range
of computer vision applications.

Within this domain, several key strategies have been developed for pruning algorithms,
alongside criteria that assist in identifying parameters whose removal exerts minimal impact on
the overall performance of the model.

2.1. Iterative pruning

Iterative pruning methods are typically applied to pre-trained neural networks. In this
approach, after selecting an appropriate criterion, a series of parameters is progressively removed
from the model. The updated network is then fine-tuned over several epochs, ensuring its further
refinement. This cycle is repeated until the performance of the pruned neural network declines
below a predefined threshold relative to the original model, or until the desired level of parameter
reduction is achieved.

2.1.1. Magnitude-based pruning

One of the most effective and widely adopted approaches to pruning is magnitude-based
pruning [6]. The central idea of this criterion is the exclusion of weights from the neural network
whose absolute values fall below a predefined positive threshold. For instance, convolution
operations can be represented as:

yi =
n∑

j=0
wijxj , i = 0,m ,

indicating that weights with the smallest absolute values contribute the least to the resulting
sum. Consequently, their removal is expected to have a minimal impact on the network’s overall
performance. Due to its simplicity, magnitude-based pruning is frequently employed in practice;
however, its effectiveness diminishes when the neural network is heavily pruned.

2.1.2. Pruning based on the L1 norm

This pruning method extends to the removal of entire filters in the convolutional layers of
a neural network, based on their L1 norm [7,8] being below a specified threshold. The L1 norm
of a tensor F ∈ Rn is computed during each iteration of the pruning process as follows:

‖F‖ =
n∑

k=1

|wk|.

2.1.3. Pruning based on Euclidean distance

Another variant of this method involves removing parameters or filter tensors in convo-
lutional layers based on their pairwise Euclidean distances [8–10] being less than a defined
threshold. The Euclidean distance between any two parameter tensors P , Q ∈ Rn is calculated
at each iteration of the pruning process as:

d(P,Q) =

√
n∑

k=1

(w
(p)
k − w

(q)
k)2.

This computation yields a symmetric distance matrix D ∈ RI×I :

D =

{
d(Fi, Fj), i 6= j

0, i = j
,

where I – number of parameter tensors in the model, with Fi denoting the tensor at index i.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

45

Subsequently, based on the computed distance matrix, one tensor from each pair with a
distance below the threshold is removed from the model. This iterative process ensures reduction
of redundant parameters while preserving the network’s core functionality.

2.2. Pruning models during training

There exist algorithms that enable pruning of a neural network immediately after parameter
initialization, allowing for the exclusion of redundant parameters directly during the training
process. This approach relies on predefined criteria to assess parameter significance, enabling
the network structure to be dynamically adapted throughout training [11,12].

One of the primary advantages of this method is the significant time savings in creating a
lightweight version of the neural network. Since the stages of training and removal of insignificant
parameters occur simultaneously, the model can achieve an optimal state more rapidly, which
is particularly critical in scenarios with limited time or resources.

Additionally, this approach enhances the model’s generalization capability, as the removal
of non-essential parameters during training can reduce the risk of overfitting. In this way, the
model more effectively identifies the most important characteristics in the data, which potentially
improves the quality of the final results.

2.2.1. Sparse evolutionary training

The sparse evolutionary training (SET [13]) method is based on evolutionary algorithms.
The application of pruning during the network design phase, even before the start of training,
significantly reduces the number of parameters in the model. This, in turn, lowers memory
requirements and improves computational efficiency. Research has shown that neural networks
constructed using sparse (or sparsely connected) layers exhibit excellent performance and quality
comparable to traditional fully connected layers. Such layers, trained via the SET method, can
replace fully connected ones without a loss in accuracy and can even feature a quadratic reduction
in parameter count at the design stage. This approach involves a regular process of removing the
smallest positive and largest negative weights from sparse connections. These weights are closest
to zero, indicating they have minimal impact on the network’s performance. After removing
these weights, an equivalent number of new random connections are added to the current layer,
maintaining a balanced number of connections during training. The cycle of weight removal and
addition is repeated over a set number of training epochs. After training concludes, the layers
are fixed at the final step of weight removal without adding new connections.

2.2.2. Trainability preserving pruning

Numerous studies emphasize the importance of preserving the trainability of neural net-
works, which can be disrupted by the pruning process. The trainability preserving pruning
(TPP [14]) method focuses on minimizing correlations between convolutional layer filters to
maintain their trainability post-removal. To achieve this, a regularization term is introduced
into the loss function, penalizing filter non-orthogonality.

The authors of this method propose a more flexible constraint that does not demand perfect
preservation of trainability but ensures that gradients can effectively propagate through the
network without obstructions. Unlike stringent requirements for orthogonality, which mandate
that singular values of the Jacobian matrix equal exactly one, TPP only requires that these
values avoid extreme deviations, enabling stable training.

A critical aspect of this method is the separation of retained filters from removed ones in the
target Gram matrix associated with the convolutional layer filters. All elements corresponding
to removed filters are zeroed out, preserving the remaining values. Filters are pruned based on
their L1 norms, with the lowest values considered non-essential. Furthermore, it is crucial to

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

46

account for batch normalization layers, as their states are also subject to training. Removing
filters can alter the internal distribution of features, necessitating appropriate modifications to
the statistics collected during training. To mitigate this effect, the authors suggest ordering
the lists of pruned filters and introducing a penalty term for batch normalization layers, thus
providing necessary regularization for these layers.

2.2.3. Adding before pruning

The adding before pruning (ABP [15]) method is an innovative approach that allows the
model to focus on significant filters based on training rather than artificial criteria such as norms,
ranks, or other metrics.

In this method, an attention level is introduced to improve the evaluation of filter signif-
icance. At this level, binary significance scores are assigned, helping the system more clearly
determine the importance of each filter during training. Furthermore, to optimize gradient
propagation at the attention level, a specialized gradient estimator was developed. This tool
has proven effective in ensuring convergence of computational flows through rigorous mathemat-
ical validation, enabling more efficient training management.

One of the key features of the ABP method is simultaneous pruning and training of filters,
which facilitates the automatic elimination of redundancy in the neural network. This is achieved
by reducing reliance on complex prior knowledge typically required to establish threshold criteria.
Simplifying this process increases the model’s flexibility and adaptability to various tasks.

Experimental results obtained during testing on standard image classification datasets show
that the proposed ABP method significantly outperforms previous pruning algorithms in effi-
ciency and accuracy. These achievements make the method particularly promising for modern
machine learning and computer vision systems, where both resource efficiency and high perfor-
mance are critical.

2.2.4. Graph convolutional network pruning

Graph convolutional network-based pruning (GCNP [16]) is designed to improve model
compression, adapting networks for resource-constrained environments without compromising
classification accuracy. The primary idea involves leveraging graph structures to make more
effective decisions about which channels to retain or remove. This process consists of several key
stages, from feature extraction at each layer to training a reinforcement learning-based agent.

The first step involves extracting channel features for each layer of the neural network.
This information is then used to construct a graph, where the graph nodes represent channels,
and edges between nodes are established based on feature similarity. The Kullback–Leibler
divergence is used to evaluate this similarity, and edges are formed if the distance between
channels falls below a predefined threshold.

Next, a GCN-based agent analyzes the constructed graph and synthesizes information on
the importance of various channels. The agent decides which channels to prune, generating
a probabilistic distribution of actions. To enhance adaptability and convergence to optimal
pruning schemes, the agent is trained using the Policy Gradient method. This method enables
the agent to optimize its actions based on the model’s post-pruning performance.

The agent’s training process is iterative. For each layer, the network generates multiple
pruning schemes, selecting those that minimize the target objective as training labels. Parameter
updates for the GCN are performed using backpropagation, gradually improving decision quality.

3. Dynamic pruning by importance of random excluded channels

Previously we proposed a novel neural networks pruning method, named DPIREC (dynamic
pruning by importance of random excluded channels) [21]. The proposed pruning approach

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

47

builds on the concept of random subset feature selection (RSFS [20]), where the classification
task is constructed as an ensemble of classifiers, each utilizing random subsets of features from
the dataset. Each feature is assigned a relevance score determined by the accuracy of the
classifiers that use it for prediction. Pruning in this algorithm is performed dynamically during
the neural network’s training process.

Let F denote the set of neural network parameters (e.g., weights, filters, or channels). Each
parameter fj ∈ F is associated with a relevance value rj ∈ R. Similarly, the set of dummy
parameters Z is defined, where each dummy parameter zj is assigned a relevance value qj ∈ R.

During each i-th iteration of the neural network training, the following steps are executed:

1. Randomly select n parameters from F using a uniform distribution to form the subset Si.

2. Similarly, randomly select m dummy parameters from Z using a uniform distribution to
form the subset Yi.

3. Compute the loss function value Li for the neural network, where all parameters outside
Si are excluded. Define li = −Li.

4. The relevance values rj for parameters fj ∈ Si ⊂ F are updated as rj = rj+li−E(l), where
E(l) is the expected value of the loss function (average value across previous iterations).

5. Similarly, the relevance values qi of the dummy parameters zj ∈ Yi ⊂ Z are updated:
qj = qj + li − E(l).

The weights of the neural network are updated according to standard training algorithms,
involving all trainable parameters. Dummy parameters do not participate in the training process
or loss computation. However, their relevance values qj are accumulated in the same manner
as for true parameters. Consequently, the accumulation of relevance values qj for a dummy
parameter zj becomes a random process unrelated to the actual performance of the neural
network.

To determine which parameters fj significantly influence the quality of neural network train-
ing, we establish a baseline level qbaseline using the relevance of dummy parameters qj . True
parameters are deemed significant if their relevance exceeds this baseline level, as measured by
their contribution to minimizing the neural network’s loss function.

Finally, to identify the subset S ⊂ F of parameters that really surpass the baseline rele-
vance of dummy parameters, a statistical test is performed. Specifically, the relevance rj of a
parameter fj must satisfy:

p(rj > qbaseline) ≥ δ, ∀fj ∈ S ⊂ F, (1)

where δ is a fixed probability threshold. The random baseline level qbaseline is modeled as a
normal distribution of dummy relevance values q̄j . The probability that a parameter is more
relevant than a dummy parameter is then derived from the normal distribution:

p(rj > qbaseline) =
1

σ
√

2π

rj∫

0

exp(
−(x− µ)2

2σ2
)dx, (2)

where µ and σ are the mean and standard deviation of qj across all dummy parameters.
The method for evaluating relevance represents one of the key elements of the DPIREC ap-

proach. Therefore, in this work, we conducted an analysis of the existing method and introduced
a new algorithm that accounts for changes in the loss function during the neural network training
process. The advantage of the new approach was demonstrated through extensive comparative
testing of DPIREC against several existing pruning methods on image recognition tasks.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

48

4. Reflected losses approximation

One of the primary challenges associated with the DPIREC method is its inability to effec-
tively respond to reductions in the values of the loss function during neural network training. To
overcome this limitation, we propose an innovative approach based on reflected losses approx-
imation (RLA), in which each parameter fj from the set F is linked not to a single relevance
value but to a dynamic collection of reflected loss function values rj = {rjk | − ∞ < rjk ≤ 0}.
Similarly, the dummy zj parameter of the set Z will also correspond to the set of reflected loss
function values qj = {qjk | −∞ < qjk ≤ 0}.

During each iteration i of the neural network training process, the following sequence of
operations is executed:

1. A subset Si of n parameters is randomly sampled from the set F using a uniform distri-
bution.

2. Similarly, a subset Yi of m dummy parameters is randomly selected from the set Z under
the same uniform distribution.

3. The value of the loss function Li is evaluated for the neural network, retaining only the
parameters in Si while discarding all others. Define li = −Li.

4. The computed value li is added into the set of relevance values rj corresponding to each
parameter fj ∈ S ⊂ F .

5. The value li is added to the set of relevance values qj associated with each dummy param-
eter zj ∈ Yi ⊂ Z.

6. To derive a numerical measure of parameter importance, polynomial fitting is applied
to the set of loss values rj , in this approach first degree polynomials are used. The
coefficient corresponding to the highest-degree term of the polynomial is used to determine
the relevance r̄j . A similar procedure is applied to compute the relevance q̄j for dummy
parameters.

Following the computation of the relevance metrics r̄j for true parameters and q̄j for dummy
parameters, a statistical evaluation analogous to the baseline approach is conducted. The deci-
sion rule defined by equations (1) and (2) is applied, with r̄j and q̄j substituted as the respective
relevance measures. This adaptation ensures that the statistical framework remains consistent
with the baseline methodology while incorporating the refined relevance metrics r̄j and q̄j .

4.1. RLA approach advantages demonstration

Consider an example that demonstrates the advantages of the DPIREC approach based
on reflected losses approximation (RLA) compared to DPIREC approach based on an iterative
change in relevance:

• We define the size of the set |F | = 3 and iterations_count = 30.

• Then, we execute steps 1, 3 and 4 of the algorithm iteratively for iterations_count times.

• For the obtained sets r1, r2, r3, polynomial fitting is performed.

• The parameter relevance values f1, f2, f3 will be represented by the coefficients correspond-
ing to the highest-degree term of the polynomial – r̄1, r̄2, r̄3.

As can be seen from the table and graph, parameter r1 contributes the least to the changes
in the loss function and thus has the lowest relevance value, increasing the likelihood of
its exclusion from the neural network model. However, the approach based on an iterative
change in relevance determines parameter r3 as the least significant for the model, which
does not align with its impact on the loss function. Excluding r3 would result in greater
accuracy losses in the model compared to excluding r1.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

49

Figure 1. The points on the graph below correspond to the loss function values at each iteration. If a
point was included in the set rj of parameter fj , it will be highlighted with the respective color associated
with the parameter. The lines represent the approximation polynomials. The lines are offset to one point
to emphasize the differences in the values r̄1, r̄2, r̄3

Table 1. Parameter – the parameter for which the relevance values were calculated, Base – the
relevance value obtained using the iterative DPIREC approach, RLA – the relevance value obtained
using the DPIREC RLA approach

Parameter Base RLA

f1 0.786 0.014

f2 0.844 0.017

f3 0.628 0.016

As illustrated, the DPIREC RLA method more accurately reflects the true contribution
of each parameter to the loss function, thereby facilitating more effective pruning decisions.
This contrasts with the iterative DPIREC approach, which might misidentify less impactful
parameters, leading to suboptimal pruning outcomes.

5. Experiments and results

5.1. Datasets

The CIFAR [17] datasets are widely used benchmarks in computer vision tasks. They are
divided into two parts: CIFAR-10 and CIFAR-100, containing 10 and 100 classes, respectively.
Each dataset consists of 50,000 training images and 10,000 test images with a resolution of
32× 32 pixels. All images are uniformly distributed among the classes, ensuring balanced data.

During model training, data augmentation methods were applied, including random hori-
zontal flipping and padding with cropping. For both CIFAR-10 and CIFAR-100, the padding
size was set to 4 pixels. These strategies help reduce the risk of overfitting. This study does not
require additional sophisticated data augmentation methods, as the primary focus is on model
compression.

5.2. Network architectures

Two widely recognized convolutional neural network architectures, VGG [18] and ResNet [19],
were selected for the experiments, as they serve as reliable benchmarks for evaluating model
compression techniques, including pruning and other optimization methods.

The following architecture variants were used in the experiments:

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

50

• VGG-16: A classical architecture with 14.73 million parameters;

• ResNet-18: A residual block-based model containing 11.17 million parameters;

• ResNet-20: A compact model with 0.27 million parameters;

• ResNet-56: A mid-sized model with 0.86 million parameters.

These architectures were chosen due to their differences in size and complexity, allowing for
an in-depth investigation of how parameters pruning affects performance.

To account for the differences in dataset scale, the architectures were adapted to minimize
parameter redundancy. This ensures a balance between model performance and computational
efficiency. Such adaptations facilitate a more meaningful comparison of models with varying pa-
rameter counts and structural complexities, providing deeper insights into the effects of pruning
methods, such as sparsity, on classification accuracy.

5.3. Performance assessment

To investigate the effectiveness of the DPIREC RLA approach for pruning convolutional
neural networks, it is necessary to conduct an experimental comparison with existing convolu-
tional neural network pruning methods. The final accuracy of the neural network model at an
equivalent level of sparsity will be used as the criterion for comparing the pruning methods.
Below, we present the results of an experimental comparison of the DPIREC approach with
pruning methods based on the L1 norm and Euclidean distance, which were also implemented.

Table 2. Comparison of pruning quality for various neural networks on the CIFAR-10 dataset. Network –
convolutional neural network model; Method: (1) – pruning based on the L1 norm, (2) – pruning based
on Euclidean distance, (3) – iterative DPIREC based on an iterative change in relevance, (4) – DPIREC
RLA; Baseline Acc. – accuracy of the model on a test sample without pruning; Pruned parameters –
number of parameters excluded from the model 20%, 40%, 60% correspondingly; Acc.(%) and ↓(%) –
accuracy and decrease of accuracy pruned neural network respectively

Network Method
Baseline
Acc.(%)

Pruned params

20% 40% 60%

Acc.(%) ↓(%) Acc.(%) ↓(%) Acc.(%) ↓(%)

VGG16

(1)

92.3

91.82 −0.48 91.18 −1.12 89.64 −2.66

(2) 91.87 −0.43 91.26 −1.04 89.84 −2.46

(3) 92.03 −0.27 91.31 −0.99 90.27 −2.03

(4) 92.16 −0.14 91.38 −0.92 90.38 −1.92

ResNet18

(1)

93.7

93.53 −0.17 93.28 −0.42 92.43 −1.27

(2) 93.56 −0.14 93.29 −0.41 92.55 −1.15

(3) 93.58 −0.12 93.40 −0.31 92.92 −0.78

(4) 93.61 −0.09 93.43 −0.27 92.96 −0.74

ResNet20

(1)

92.1

91.76 −0.34 91.3 −0.8 89.74 −2.36

(2) 91.84 −0.26 91.32 −0.78 89.95 −2.15

(3) 91.92 −0.18 91.44 −0.66 90.24 −1.86

(4) 91.98 −0.12 91.51 −0.59 90.29 −1.81

ResNet56

(1)

93.2

92.91 −0.29 92.62 −0.58 91.85 −1.35

(2) 92.99 −0.21 92.65 −0.55 91.95 −1.25

(3) 93.05 −0.15 92.89 −0.31 92.36 −0.84

(4) 93.10 −0.10 92.93 −0.27 92.39 −0.81

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

51

Table 3. Comparison of pruning quality for various neural networks on the CIFAR-100 dataset

Network Method
Baseline
Acc.(%)

Pruned params

20% 40% 60%

Acc.(%) ↓(%) Acc.(%) ↓(%) Acc.(%) ↓(%)

VGG16

(1)

69.5

68.71 −0.79 66.93 −2.57 64.39 −5.11

(2) 68.75 −0.75 66.98 −2.52 64.62 −4.88

(3) 68.90 −0.61 67.63 −1.87 65.66 −3.84

(4) 68.96 −0.54 67.76 −1.74 65.86 −3.64

ResNet18

(1)

74.32

73.94 −0.38 73.04 −1.28 71.86 −2.46

(2) 73.99 −0.33 73.11 −1.21 71.94 −2.38

(3) 74.08 −0.24 73.34 −0.98 72.33 −1.99

(4) 74.16 −0.16 73.43 −0.89 72.65 −1.67

ResNet20

(1)

68.23

67.75 −0.48 66.64 −1.59 65.12 −3.11

(2) 67.81 −0.42 66.73 −1.50 65.24 −2.99

(3) 67.91 −0.32 66.89 −1.34 65.75 −2.48

(4) 68.01 −0.22 67.29 −0.94 66.12 −2.11

ResNet56

(1)

72.46

72.06 −0.40 71.12 −1.34 69.81 −2.65

(2) 72.12 −0.34 71.19 −1.27 69.91 −2.55

(3) 72.19 −0.27 71.57 −0.89 70.34 −2.12

(4) 72.27 −0.19 71.83 −0.63 70.66 −1.80

The DPIREC method based on reflected losses approximation (RLA) demonstrates superior
performance among all reviewed methods.
• Across all architectures (VGG16, ResNet18, ResNet20, ResNet56) and datasets (CIFAR-

10, CIFAR-100), DPIREC RLA ((4) in the table) achieves the lowest accuracy decrease
at the same parameter pruning levels (20%, 40%, 60%).

• The advantage of DPIREC RLA becomes particularly evident at higher levels of parameter
pruning. For instance, in the case of ResNet56 on CIFAR-10, with 60% pruning, the
accuracy decrease is only 0.81% for DPIREC RLA, compared to 1.35% for the L1-norm-
based pruning method ((1) in the table).

Accuracy decrease reduces with larger ResNet architectures
• Larger models, such as ResNet56, demonstrate less quality degradation under DPIREC

RLA compared to more compact architectures like ResNet20.

• For example, with 60% pruning on CIFAR-10, the accuracy decrease for ResNet20 is 1.81%,
whereas for ResNet56 it is only 0.81%. This highlights the capability of larger models to
retain performance even under significant parameter pruning.

DPIREC RLA effectively considers parameters relevance
• The use of reflected losses approximation (RLA) approah enables a more precise evaluation

of parameter contributions to loss reduction, resulting in more balanced and effective
pruning.

• This is particularly evident when comparing DPIREC based on an iterative change in
relevance and DPIREC RLA – the latter consistently outperforms the former.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

52

5.4. Comparison with other state-of-the-art solutions

This section provides a comparative analysis of the DPIREC RLA method with modern
state-of-the-art approaches to neural network pruning during training, such as adding before
pruning (ABP [15]) and graph convolutional network-based pruning (GCNP [16]). This com-
parison is essential for an objective evaluation of the effectiveness of the developed method
within the context of the current state of pruning technology.

Table 4. Network – convolutional neural network model; Method – pruning method; Baseline Acc. –
accuracy of the model on a test sample; Pruned Acc. – accuracy of the pruned model on a test sample;
Acc. downarrow – accuracy decrease after pruning; Params ↓ – number of excluded parameters

Dataset Network Method
Baseline
Acc.(%)

Pruned
Acc.(%)

Acc.
↓(%)

Params
↓(%)

CIFAR-10

ResNet20

ABP 92.15 91.03 −1.12 45.1

DPIREC RLA 92.1 91.36 –0.64 45

GCNP 92.25 91.58 −0.67 38.51

DPIREC RLA 92.1 91.57 –0.59 40

GCNP 92.25 92.22 −0.33 27.42

DPIREC RLA 92.1 91.89 –0.21 30

ResNet56

ABP 93.41 93.1 −0.31 45.7

DPIREC RLA 93.2 92.93 –0.29 45

GCNP 93.72 92.75 −0.97 70.5

DPIREC RLA 93.2 92.27 –0.93 70

CIFAR-100

ResNet20

GCNP 68.38 68.95 0.57 8.16

DPIREC RLA 68.23 68.16 −0.07 10

GCNP 68.38 66.14 −2.24 49.42

DPIREC RLA 68.23 66.57 –1.66 50

ResNet56
GCNP 72.86 72.22 −0.64 39.83

DPIREC RLA 72.46 71.83 –0.63 40

The DPIREC RLA method demonstrates competitive performance relative to other state-of-
the-art techniques. In most cases, DPIREC RLA achieves lower accuracy degradation (Acc. ↓) at
comparable or better parameter pruning levels compared to the ABP and GCNP methods. For
instance, with ResNet20 on CIFAR-10 and approximately 45% sparsity, DPIREC RLA reduces
accuracy by just 0.64%, outperforming ABP (−1.12%) and GCNP (−0.67%).

The method performs equally well on both smaller models (e.g., ResNet20) and larger archi-
tectures (e.g., ResNet56), consistently achieving either minimal accuracy losses or competitive
results at similar levels of sparsity.

6. Conclusion

We conducted a comprehensive investigation and enhancement of the previously proposed
neural network pruning method DPIREC (Dynamic Pruning by Importance of Random Ex-
cluded Channels). The primary focus was on optimizing the new parameter exclusion approach
and improving the overall efficiency of the method.

The following key results were achieved during the course of this research:

• A detailed analysis of the existing parameter significance evaluation criterion in the DPIREC
method was carried out.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

53

• A novel approach for evaluating parameter relevance based on polynomial approximation
was proposed, enabling a more accurate consideration of the dynamics of model accuracy
changes.

• Extensive experimental studies were performed on various convolutional neural network
architectures (VGG, ResNet) using the CIFAR-10 and CIFAR-100 datasets.

• Results demonstrated the superiority of the improved DPIREC method over several exist-
ing pruning techniques. Specifically, when pruning 40% of the ResNet18 architecture on
the CIFAR-100 dataset, the drop in accuracy was only 0.89%.

The obtained results confirm the effectiveness of the proposed improvements and suggest
that this method can be recommended for optimizing neural network architectures. In future
work, we plan to adapt the method for larger-scale architectures and explore its applicability in
other areas of deep learning.

References

1. Gusak J., Cherniuk D., Shilova A. et al. Survey on Efficient Training of Large Neural
Networks // Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI–22, July 23-29, 2022. DOI: 10.24963/ijcai.2022/765.

2. Wang Y., Wei G., Brooks D. Benchmarking TPU, GPU, and CPU Platforms for Deep
Learning // John A. Paulson School of Engineering and Applied Sciences, Harvard
University, July 24, 2019. DOI: 0.48550/arXiv.1907.10701.

3. Li Z., Chen T., Wang Z. et al. Can pruning improve certified robustness of neural
networks? // Transactions on Machine Learning Research. 2022.
DOI: 10.48550/arXiv.2206.07311.

4. Harutyunyan H., Reing K., Steeg G.V. et al. Improving Generalization by Controlling
Label-Noise Information in Neural Network Weights // Proceedings of the 37th
International Conference on Machine Learning, ICML’20, July 13, 2020. Article 381.
P. 4071–4081. DOI: 10.5555/3524938.3525319.

5. Cheng H., Zhang M., Shi J.Q. A Survey on Deep Neural Network Pruning-Taxonomy,
Comparison, Analysis, and Recommendations // IEEE Trans. Pattern Anal. Mach. Intell.
2024. Vol. 46, no. 12. P. 10558–10578. DOI: 10.1109/TPAMI.2024.3447085.

6. Li H., Kadav A., Durdanovic I. et al. Pruning Filters for Efficient ConvNets // 5th
International Conference on Learning Representations, ICLR 2017, April 24-26, 2017,
Toulon, France. DOI: 10.48550/arXiv.1608.08710.

7. He Y., Lin J., Liu Z. et al. AMC: AutoML for Model Compression and Acceleration on
Mobile Devices // Computer Vision – ECCV 2018. Vol. 11211. Springer, Cham, 2018.
Lecture Notes in Computer Science. DOI: 10.1007/978-3-030-01234-2 48.

8. Lee J., Park S., Mo S. et al. Layer-adaptive Sparsity for the Magnitude-based Pruning //
International Conference on Learning Representations, Vienna, Austria, May 4, 2021.
DOI: 10.48550/arXiv.2010.07611.

9. He Y., Zhang X., Sun J. Channel Pruning for Accelerating Very Deep Neural Networks //
2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
October 22-29, 2017. DOI: 10.1109/ICCV.2017.155.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

54

10. Louizos C., Welling M., Kingma D.P. Learning Sparse Neural Networks through L0

Regularization // International Conference on Learning Representations (ICLR), 2018.
DOI: 10.48550/arXiv.1712.01312.

11. Zhu M., Gupta S. To prune, or not to prune: exploring the efficacy of pruning for model
compression // International Conference on Learning Representations (ICLR), October 5,
2017. DOI: 10.48550/arXiv.1710.01878.

12. Frankle J., Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks // International Conference on Learning Representations (ICLR), March 4,
2019. DOI: 10.48550/arXiv.1803.03635.

13. Mocanu D.C., Mocanu E., Stone P. et al. Scalable Training of Artificial Neural Networks
with Adaptive Sparse Connectivity inspired by Network Science // Nature
Communications. 2018. Vol. 9. Article 2383. DOI: 10.1038/s41467-018-04316-3.

14. Wang H., Fu Y. Trainability Preserving Neural Pruning // International Conference on
Learning Representations (ICLR), July 25, 2022. DOI: 10.48550/arXiv.2207.12534.

15. Tian G., Sun Y., Liu Y. et al. Adding Before Pruning: Sparse Filter Fusion for Deep
Convolutional Neural Networks via Auxiliary Attention // IEEE Transactions on Neural
Networks and Learning Systems. 2021. Vol. 36, no. 3. P. 3930–3942.
DOI: 10.1109/TNNLS.2021.3106917.

16. Yang C., Liu H. Channel pruning based on convolutional neural network sensitivity //
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI–22, Nanjing,
China, October 1, 2022. Vol. 507. P. 97–106. DOI: 10.24963/ijcai.2022/431.

17. Krizhevsky A., Hinton G. Learning Multiple Layers of Features from Tiny Images //
Technical Report, Toronto, Ontario, April 8, 2009.
URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

18. Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image
Recognition // International Conference on Learning Representations, September 4, 2014.
DOI: 10.48550/arXiv.1409.1556.

19. He K., Zhang X., Ren S. et al. Deep Residual Learning for Image Recognition // IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016,
P. 770–778. DOI: 10.1109/CVPR.2016.90.

20. Pohjalainen J., Räsänen O., Kadioglu S. Feature selection methods and their combinations
in high-dimensional classification of speaker likability, intelligibility and personality traits
// Computer Speech & Language. 2015. Vol. 29. P. 145–171. DOI: 10.1016/2013.11.004.

21. Novikov D.A., Buryak D.Y. Neural network pruning method during training process //
Russian Supercomputing Days, September 25-26, 2023, Moscow, Russia. P. 53–63.
DOI: 10.29003/m3478.978-5-317-07070-0.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

55

	Короткие статьи
	D.A. Novikov, D.Y. Buryak

