Efficiency of Machine Learning Tasks
on HPC Devices

G. Promyslov!, A. Efremov!, Y. Ilyasov!,
1.2[0000-0002-9004-1839] 5114 A Timofeey?![0000-0003-1156-893X]

V. Pisarev
! HSE University, Moscow, Russia
2 Joint Institute for High Temperatures of RAS, Moscow, Russia

Abstract. Accurate benchmarking is critical for selecting computing
architectures optimized for machine learning (ML) tasks. Conventional
benchmarks such as High-Performance Linpack (HPL) and High Perfor-
mance Conjugate Gradients (HPCG) often fail to capture the diversity
and complexity of modern ML workloads. This study investigates the cor-
relation between hardware parameters (e.g., processor architecture, cache
size, frequency) and ML performance across various devices, including
CPUs and accelerators. By studying a wide range of ML tasks, we iden-
tify key performance bottlenecks and explore whether a correlation-based
approach can guide the selection of optimal hardware for an entire class of
ML tasks. Our findings offer practical recommendations for future com-
puting architectures and advance the efficient use of high-performance
computing for diverse ML applications.

Keywords: HPC - Machine learning - Benchmarking - Performance Pro-
filing - Hardware Efficiency

1 Introduction

Selecting an optimal computing architecture plays a pivotal role in attaining
highest performance computationally-intensive tasks. Traditional benchmarks,
such as High-Performance Linpack (HPL) and High Performance Conjugate Gra-
dients (HPCQG), have long been standards for evaluating supercomputer perfor-
mance [7,6]. However, because they primarily focus on solving systems of linear
equations, they do not fully representative for other types of workloads. In high-
performance computing (HPC), this shortfall becomes particularly critical, as
resource utilization in supercomputing environments must be maximized [8,22].
A particular domain that will be explored in this study is the ML workloads,
whose unique characteristics include large-scale matrix operations, neural net-
work optimization, and intensive data exchange.

Modern ML applications have become increasingly prevalent across diverse
domains, ranging from big-data analytics to computer vision and natural lan-
guage processing [11]. In the last decade, ML and deep learning methods are
gaining popularity in scientific-oriented domains, such as computation chem-
istry [12,10], molecular simulations [3,16,23], materials design and discovery [18].

56

The growing popularity of ML has been accompanied by a proliferation of hard-
ware platforms designed to accelerate computations, including graphics process-
ing units (GPUs), tensor processing units (TPUs), and specialized accelera-
tors [15]. This variety of hardware solutions heightens the need for more precise,
ML-oriented evaluation criteria and benchmark suites that can determine which
devices offer the most efficient execution of specific tasks.

Despite the abundance of benchmarks and testing frameworks, an unresolved
question remains: can the correlations between hardware characteristics and ML
performance be leveraged to select optimal equipment for an entire class of ML
tasks? In this work, we hypothesize that such correlation analysis will not only
provide a more objective assessment of performance but also inform the design
of future computing systems optimized for ML workloads.

The main objective of this study is to develop and validate a correlation-
based benchmarking method for analyzing hardware characteristics when run-
ning various ML tasks and obtain recommendations for computer elements and
architecture which are optimal for ML class tasks.

Potential applications of these findings include data center procurement rec-
ommendations, the architectural planning of supercomputers for specific ML
workloads, and the optimization of cloud-based platform configurations.

The remainder of this paper is organized as follows. The next section de-
scribes the methodology and the set of ML tasks employed in the study. We then
present our performance analysis results and discuss the identified correlations.
The final section summarizes our conclusions and provides recommendations for
designing future computing systems aimed at ML workloads.

2 Related work

High-Performance Computing (HPC) has traditionally focused on large-scale
simulations and data-intensive workloads using multi-core Central Processing
Units (CPUs) and Graphics Processing Units (GPUs). In recent years, a sub-
stantial body of research has examined how the characteristics of these hardware
components correlate with the performance of Machine Learning (ML) tasks,
especially in the context of deep neural networks and gradient-boosting algo-
rithms [6]. Early investigations in this area concentrated on establishing how
memory bandwidth, core count, and heterogeneous computing architectures in-
fluence throughput and model convergence times. For example, studies have
demonstrated that increasing core counts can reduce training time for convo-
lutional neural networks (CNNs), but diminishing returns often arise beyond a
certain threshold due to memory contention [24]. These findings underscore the
importance of balancing compute and memory resourcesa concept formalized
in Roofline models that capture performance limitations imposed by arithmetic
intensity and memory bandwidth [24].

A variety of tools and benchmarks have been employed to assess the com-
putational efficiency of ML tasks. Traditional HPC performance metrics such as
floating-point operations per second (FLOPS) are now coupled with additional

o7

ML-specific measures like accuracy, throughput, and timed epochs. Profilers
(e.g., NVIDIA Nsight, Intel VTune) and platform-monitoring frameworks (e.g.,
PAPI, LIKWID) facilitate detailed performance tracing, allowing researchers to
identify pipeline inefficiencies and bottlenecks [4]. Moreover, alternative evalua-
tion methodologies such as Roofline analysis [24] and domain-specific benchmark
suites (e.g., HPCG for high-performance conjugate gradient [6]) provide further
insight into how architectural features and algorithmic structures intersect.

Benchmarking efforts specific to ML frameworks have grown substantially
in recent years. TensorFlow [2], PyTorch [21], and XGBoost [5] are among the
most widely used packages in both academic and industrial settings. Compara-
tive studies have investigated scaling behaviors, GPU utilization, memory usage,
and precision trade-offs (e.g., FP32 vs. FP16) to determine optimal configura-
tions [2,21]. Much of this work relies on representative workloads such as image
classification or language modeling for measuring throughput and latency. In
parallel, community-driven benchmark suites like MLPerf [9,19] and AI Bench-
mark [14] emerged to provide standardized methodologies for evaluating end-
to-end performance of ML pipelines. These suites incorporate tasks that stress
different aspects of hardware and software stacks, such as dense and sparse com-
putation, or recurrent and convolutional layers.

Despite these advances, existing studies often adopt narrow task definitions
or focus on a limited subset of performance metrics. For instance, they may
primarily target training throughput while overlooking other critical factors like
performance variability across different hardware vendors or the interplay be-
tween HPC-style modeling tasks and intensive ML workloads. Furthermore, the
emphasis on standard neural network architectures (ResNet, Transformer, etc.)
in many benchmarking efforts can make it challenging to generalize findings to
more specialized or emerging ML applications. Another frequently cited short-
coming is the lack of integrated analysis methods that combine hardware mon-
itoring, energy consumption data, and application-level performance metricsa
combination essential for holistic evaluations in HPC environments.

In this paper, we address these deficiencies by proposing an elaborated bench-
marking approach that jointly considers ML tasks alongside a set of physics-
based kernels within a single HPC context. Unlike prior work, our methodology
tracks both application-level metrics (e.g., iteration time, solution accuracy) and
low-level hardware characteristics (e.g., memory throughput, instruction mix) to
capture a more comprehensive view of resource utilization. We also extend ex-
isting performance analysis techniques by incorporating real-time profiling and
cross-hardware comparisons (CPU vs. GPU vs. multi-GPU setups), providing
insights into scaling efficiency for diverse workload categories. This dual focuson
ML and physics-based tasksenables us to explore synergies and trade-offs not
visible in ML-only or HPC-only studies. Consequently, our work contributes a
novel perspective on how to optimize HPC infrastructures for both data-driven
and simulation-driven applications simultaneously.

58

3 Methodology

As there is a large body of benchmarking data available for certain ML tasks, this
study uses the hybrid methodology: original performance results are obtained for
platforms available to the authors, and meta-analysis of the publicly available
data is done for other platforms.

For evaluation, we explore several benchmark suites tailored for ML tasks,
ai-benchmark [13], MLPerf [9,19], other test suites [1]. The methodology for
individual benchmarks is presented in the next subsections.

3.1 Methodology for ai-benchmark

MobileNet-V2

Inception-¥3

Inception-V4

Classification InceptionResNet-V2

ResNet-V2-50

ResNet-v2-152

VGG-16

S W [U [GRS N S G R S—

SRCNN-9-5-5

VGG-19

ResNet-SRGAN

]

J

| J
mage-to-lmage

Mapping ResNet-DPED]

J

]

U-Net

Nvidia-Spade

ICNet]

Image Segmentation PSPNet]

DeepLab]

Fig. 1: Deep learning models used in ai-benchmark, divided into three main
classes of problems

ai-benchmark is a set of test problems chosen to characterize the average
performance of a platform for classification and computer vision tasks. That

99

benchmark consists of 19 different neural network models that cover most deep
learning architectures used in popular tasks and allows to test both their training
and inference processes. The models used in ai-benchmark are shown in Fig. 1
and are divided into three main classes and several subclasses. The main classes
of problem-solving models are: models for object classification, models for image-
to-image mapping and models for image segmentation.

For massively-parallel systems, this benchmark can be used to evaluate single-
node performance. Testing with an ai-benchmark performance evaluation tools
was performed on nodes of the supercomputer cHARISMa. That system was
chosen due to the need to design and establish simple and common methods for
launching, testing, and profiling in random complex environment. In Fig. 2 char-
acteristics of node of the supercomputer cHARISMa are shown that were used
for testing. The detailed characteristics and performance of those components
will be shown later in the article alongside other models.

10 Type B Computing nodes

Processor Model 2 x Intel Xeon Gold 6152 2.1-3.7 HHz (22 cores)
GPU Model 4 x NVIDIA Tesla V100 32 GB

RAM 1536 GB

Solid-state drive 2 x SSD 240 GB (RAID 1)

Network Adapter InfiniBand | 2 x Mellanox 100Gb/s Infiniband Dual Port

Network Adapter Ethernet | Intel Ethernet 10G 4P X710/1350

Fig.2: Supercomputer cHARISMa node Type B characteristics, on which the
calculations for testing were performed

We design the method for launching the benchmark together with the pro-
cedure to test the performance of random system during benchmark launch and
by using external software on the node configuration presented in Fig. 2.

The values of various metrics were also compared with their theoretical values
over a given class of scientific problems to verify the assertion that belonging to
a certain class of scientific problems will lead to similar performance results on
different systems.

In this article we analyze only the metrics that directly affect the performance
of the supercomputer components for the tasks of deep learning. They will be
discussed later in details.

3.2 Methodology for MLPerf HPC Training

MLPerf HPC Training [9,19] is a specialized performance evaluation test de-
signed to assess the computational capabilities of supercomputers in training

60

complex deep learning models. This standardized benchmarking suite is focused
on high-performance computing and includes various scenarios that reflect key
workloads in scientific and engineering research.

Scenarios of MLPerf HPC Training:

— CosmoFlow: Cosmological process modeling using convolutional neural net-
works. The primary computational workload involves processing large vol-
umes of multidimensional data, requiring high memory bandwidth and sig-
nificant computational resources for both CPUs and GPUs.

— DeepCAM: Satellite image analysis for climate research. This scenario em-
ploys convolutional neural networks for anomaly detection, imposing high
demands on computational power and efficient utilization of parallel com-
puting.

— OpenCatalyst: Chemical reaction modeling using density functional theory
in combination with machine learning. The computations involve both tra-
ditional HPC algorithms and deep learning training, making this scenario
computationally intensive.

— OpenFold: Protein structure prediction based on deep learning and trans-
former architectures. Introduced in MLPerf HPC Training v3.0, this scenario
requires substantial computational resources, particularly from GPUs, due
to intensive matrix multiplication operations.

The selection of these performance evaluation scenarios is justified by their
scientific significance and high computational complexity. As MLPerf HPC Train-
ing has evolved, these scenarios have been adapted to the changing requirements
of computing systems: CosmoFlow, DeepCAM, and OpenCatalyst have main-
tained continuity across versions, enabling performance trend analysis, while
OpenFold has expanded the scope of tested workloads by incorporating more
modern machine learning models.

MLPerf HPC Training was chosen as the primary evaluation tool because it
is tailored for scientific computing and provides a comprehensive assessment of
supercomputer performance in deep learning tasks. It is developed and main-
tained by MLCommons, ensuring its relevance and alignment with current HPC
standards.

The performance analysis is based on data published on the official ML-
Commons website [20] and specifications of individual CPU and GPU models
provided by manufacturers such as Intel;, AMD, NVIDIA, and FUJITSU. This
selection ensures data reliability, as the sources are authoritative and enable
reproducibility of the analysis.

3.3 Methodology for other test suites

The data for this study was collected from https://openbenchmarking.org, a
repository of Phoronix test suite benchmark results on various platforms. Specif-
ically, we focused on machine learning (ML) test suites that provide performance
metrics for different CPUs and GPUs. The benchmark results include metrics

61

such as inference or training time, which are critical for evaluating the perfor-
mance of hardware in ML tasks.

Since benchmark results are expressed in different units of measurement,
results were converted to either inverse seconds or units per second for the sake
of consistency. Benchmark results data was also grouped or filtered based on
the number of compute devices in the dataset or the benchmark scenarios. For
CPUs following characteristics were considered for analysis — number of cores,
base clock frequency, L3 cache size, memory bandwidth, peak FP32 performance.
For GPUs — number of cores, clock frequency, memory bandwidth, peak FP32
performance.

3.4 Common part of methodologies

The following metrics were used to evaluate computational performance:

— System performance, expressed as the inverse execution time of a given task,
independent of the contribution of CPUs or GPUs.

— Relative performance, representing the fraction of the inverse execution time
that corresponds to the share of either CPU or GPU contribution to the over-
all system performance, proportional to the peak floating-point performance
(FLOPS) of the respective device.

— Balance, calculated as the ratio of the peak performance sum (either for
all CPUs or all GPUs) to the total memory bandwidth (main memory for
CPUs or video memory for GPUs), ensuring a consistent comparison within
the same type of computational resources.

— Average execution time, calculated as the arithmetic mean of execution times
for a specific computational device characteristic.

— Potential peak Performance, computed as the product of the average execu-
tion time and the peak FLOPS performance of the given computing device.

Key hardware characteristics considered in the analysis:

— CPU: Number of cores, clock frequency, L3 cache size, memory bandwidth,
peak FP32 performance.

— GPU: Number of cores, clock frequency, memory bandwidth, peak FP32
performance.

For data processing and analysis, aggregation methods were applied based
on the logical grouping of datasets by benchmark version, scenario, computing
device type and model. The software implementation of these principles accel-
erated the processing and facilitated a more detailed analysis and visualization
of results. Data validation and cleaning were performed manually, with results
corresponding to computing device models whose specifications could not be
confirmed from reliable sources being excluded from the analysis.

62

4 Results

4.1 Results for ai-benchmark

The ai-benchmark score is calculated as geometric mean of the inverse runtime
values of different models in the benchmark, so the higher the score is, the better
model performed. For the convenience of the experiment, the averages among
all presented models for which information was available are being calculated.
Those averages are presented in Figures 3 and 5 by solid lines. We decided to
divide results of CPU testing shown on the Figure 3 into two different classes
depending of manufacturers: Intel or AMD. Tables with the data on the basis of
which those graphs were constructed are presented later in the article.

Let us now directly show and discuss the results of CPU testing. Figure 3
represents the dependencies of score from chosen metrics: number of CPU cores,
amount of threads, L3 Cache size (MB), theoretical performance (Flops) and
recommended retail price (USD).

type type
o Intel 4000 o Intel
+ AMD . + AMD

4000

3500

s better)

3000 3000

2500 2500 4

2000

Score (higher is better)

Score (higher

1500

1000 o

Cores (number) Cache L3 (Mb)

(a) (b)

type
 Intel 4000
* AMD

4000

3500 3500

s better,

3000 3000

2500 2500

2000

Score (higher is better)

Score (higher

1500

1000 o 1000

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000
Performance (GFLOPS) Cost (USD)

(c) (d)

Fig. 3: Dependency of ai-benchmark score from the number of cores in CPU (a),
the CPU L3 cache size (b), rated CPU FLOPS (c), CPU cost (d) (launch date
prices were taken when possible). Red lines and symbols correspond to the AMD
CPU models and blue lines and symbols to Intel CPU models

Figure 4 represents the existing dependency between L3Cache size and per-
formance of different CPU models. That proves visible dependencies between
figures shown at 3

Figure 5 represents the dependencies of score on GPU platforms from selected
metrics: number of GPU cores, clock speed, memory bandwidth, peak perfor-

63

Hapannreavrvie svvucaumenvuvie mexnosoeun (IlaBT’2025) || Parallel computational technologies (PCT’2025)

agora. gury.ru,/pavt

4000

3500

w
&
S
3
\
\

2500 D <

Performance (GFLOPS)
G 8
g 2
g 8
\
\
\

1000 e

500

60 80 100 120
Cache L3 (Mb)

Fig. 4: Dependence of evaluated CPU performance from L3Cache size. Red line
and symbols correspond to the AMD CPU models and blue line and symbols to
Intel CPU models

Score (higher is better)

Score (higher is better)

2500 3000 3500 4000 4500 5000 1200 1300 1400 1500 1600
Cores (number) Frequency (MHz)

. 3sk
g £
2 0 % a0
]]
2 2
£ v 2 25k
¥ ¢
8 8
@ @

20k 20k

300 400 500 600 700 800 900 9 10 1 12 13 14 15 16 17
Bandwidth (Gb/s) Performance (TFLOPS)

Fig.5: Dependency of ai-benchmark score from the number of GPU cores (a),
the GPU clock speed (b), GPU memory bandwidth (c¢), GPU peak performance
in FP32 (d)

mance in FP32 FLOPS in graphics processing unit (GPU). From the figures we
see that the primary characteristic determining the benchmark performance on
CPU the peak floating-point performance, suggesting that the problems cho-
sen for the benchmark are compute-bound on the tested platforms. For GPU-
accelerated platforms, the performance increases with the number of GPU cores,
peak flops and memory bandwidth. However, those characteristics typically in-
crease simultaneously with each new GPU generation, so that it’s hard to decide
what plays the most significant role.

64

Hapannreavrvie svvucaumenvuvie mexnosoeun (IlaBT’2025) || Parallel computational technologies (PCT’2025)

agora. gury.ru,/pavt

To identify the bottleneck characteristic, we have conducted a roofline anal-
ysis for the benchmark running on a cHARISMa Type B node. Figure 6 shows
the obtained result. We can see that the benchmark tasks (red-circled marker)
lie within the compute-bound region, meaning that ai-benchmark tasks are
compute-bound both on CPU-only and on CPU+GPU platforms. We should
also note that the performance is significantly below the peak GPU performance,
meaning that such tasks have a significant potential for improved performance
by algorithmic changes.

Flosting Point Operations Roofline

o

1
i

|

|

At tansty [LOP el

Fig. 6: Roofline analysis of ai-benchmark on cHARISMa Type B computing node.
Blue shading denotes the bandwidth-bound zone, green shading denotes the
compute-bound zone for NVidia V100 GPU. The red-circled marker is the posi-
tion of ai-benchmark

4.2 Results for other CPU test suites

This subsection provides graphs showing the dependencies between CPU speci-
fications and benchmark results within each test suite.

L3 Cache On the Figure 7 there are plots with results in benchmarks and cache
sizes. In some packages, processors with larger L3-cache have better performance
(e.g., LeelaChessZero, MLPack, Numenta and Whisper.cpp). However, it is dif-
ficult to distinguish the dependence between them.

Caffe - L3 Cache and inverse seconds
[]

LeelaChessZero - L3 Cache and nodes per second

3 ® o 20000
° 17500
L]
8 2 o g0 © 215000
L] o
§ o ® ° ® e 12500
& ° ° [B4 Configuration Configuration
° 2 10000
g1 . o AlexNet e e Eigen
g S N P S |
g ~ GoogleNet 8 7500 BLAS
= 2
o 5000
2500
-1 0 s
3 > 7 2 ou 2 2 2 21
L3 Cache [MB] L3 Cache [MB]
(a) (b)

65

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru/pavt

LiteRT - L3 Cache and inverse seconds

1500 =
1000 °
L]
500 —
B
g o Configuration
§ 500 e Deeplab V3
o o Mobilenet Float
£ 1000 Quantized COCO
B © SSD MobileNet v2
= -1500 o SqueezeNet
~2000
~2500
24 25 25 7 28 29 Q0 o
L3 Cache [MB]
(c)
Numenta - L3 Cache and inverse seconds
0.6
05
Y Configuration
To4 o Bayesian Changepoint
S Contextual Anomaly
803 © Detector OSE
[o Earthgecko Skyline
] ® KNNCAD
£02 @ Relative Entropy
o Windowed Gaussian
0.1 o EXPoSE
0.0
2 2 2 2 nu
L3 Cache [MB]
(e)
Pytorch - L3 Cache and batches per second
160
140
'g 120
§ 100 Configuration
v © Resnet-50
g 80 © Efficientnet v2_|
4 © Resnet-152
< 60
el °
a3 L °e
40 °« e A
0 el .
0
24 2 2 10
L3 Cache [MB]
spaCy - L3 Cache and tokens per second
7000
6000
o
£ 5000
@
9 4000 Configuration
g ® en_core_web_trf
. _core_web |
2 3000
= 2000
1000

2
L3 Cache [MB]

97 22 g0

66

MLPack - L3 Cache and inverse seconds

0.10
0.08
) L]
k=l
s
£0.06 | @ e o Configuration
3 >t o scikit ica
@ N
4 T o | © * . ° sclk!t_qda
E 0.04 ® N ® scikit_svm
23 25 97 o1
L3 Cache [MB]
012 OpencCV - L3 Cache inverse seconds
0.10
1 0.08 Configuration
K * o Core
$0.06 o DNN
b o Features 2D
£0.04 L] = (] ‘ o Graph API
2 ! ° o Image Processing
=002 P EELE { -~ = :. o Object Detection
¥y 3 v —"8—a_ o | o Stitching
0.00 v L —
2 25 P 2 ou
L3 Cache [MB]
RNNoise - L3 Cache and inverse seconds
0.45
0.40
0.35
@
8
S 0.30
$ Configuration
025 ® 26 Min Talking Sample
$ 020
2
£
0.15
©g00% ® °, o ——
0.10
.
0.05 o
23 4 25 6 2 9 g0
L3 Cache [MB]
Tensorflow - L3 Cache and images per second
6000
5000
K]
S 4000 Configuration
8 ® AlexNet
5 ® GoogleNet
> 3000 © ResNet-50
g e VGG-16
& 2000 4
E
1000 e 7
— —3

L3 Cache [MB]

)

Hapanresvrve svvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT 202!

agora. guru.Tu,/pavt

Tensorflow Lite - L3 Cache and inverse seconds Whisper.cpp - L3 Cache and inverse seconds
1500 0.030
1250
0.025
«» 1000 r w
K 20.020
g 750 Configuration 9 Configuration
° ° e Mobilenet Float ©0.015 o ggml-base.en
° °© 2
g 500 o0 | © o0 o Mobilenet Quant 2 < o ggml-medium.en
2 20 St o ~ ® NASNet Mobile 20010 : o ! o ggml-small.en
88 0o oo 0,005 __‘__/.
0 g X O -
(] () $ @
)
_250 0.000 o o ———— e S
23 25 P 2 on 2 2 25 2 P 28
L3 Cache [MB] L3 Cache [MB]

(k))

Fig. 7: Dependency of CPU performance from L3-cache in ML tasks within each
test suite

Memory Bandwidth On the Figure 8 there are plots with results in benchmarks
and maximum memory bandwidth. In most test suites, larger memory band-
width gives better performance in machine learning tasks.

Caffe - Maximum memory bandwidth and inverse seconds

3.0 L] LeelaChessZero - Maximum memory bandwidth and nodes per second
17500
25 *
[15000
%
©2.0 12500
o
91s Da— e| configuration % 10000 Configuration
E .\ ® AlexNet ; 7500 ° ° ELAS
o © GoogleNet e Eigen
1.0 ° 9 g
E o O 8 s000
® Ei'-*u*.—_. L) °
0.5 P D 2500 -
0 .
0.0
10! 102
Max Memory Bandwidth [GB / s]
10! 102

Max Memory Bandwidth [GB / s]

(a)

(b)

MLPack - Maximum memory bandwidth and inverse seconds

LiteRT - Maximum memory bandwidth and inverse seconds
600
0.08 —
500 °
400 °
2 £0.06 o o
£ 300 Configuration 5) .
8 S ° Configuration
b o DeeplabV3 2 guri
o 200 o Mobilenet Float ©0.04 . . o scikit ica
£ 100 Quantized COCO 2 & ° o scikit gda
H © SSD MobileNet v2 g o scikit svm
e o SqueezeNet £ s © _~% N
0.02 oo
—]
100 S o% e 3
200 0.00
10t 10%

102
Max Memory Bandwidth [GB / s] 10t 102
Max Memory Bandwidth [GB / s]

) (@

67

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru/pavt

Numenta - Maximum memory bandwidth and inverse seconds OpenCV- Maximum memory bandwidth and inverse seconds

0.04]
0.4 . o
N 0.03 N
« Configuration ") Configuration
'g 03 e Bayesian Changepoint ‘g 00 d o Core
Contextual Anomaly S o °
g © Detector OS| 2 Q 1 ° FDN’: b
%02 © EXPoSE 9 ° o Features
] o Earthgecko Skyline g oo N —- S— | ® IGraph :Pl
E o KNNCAD H - ——e o Image Processing
© Relative Entropy 0.00 L] ¥ | o Object Detection
o Windowed Gaussian o Stitching

10t 10%
Max Memory Bandwidth [GB / s]

1 102
Max Memory Bandwidth [GB / s]

(e) ()

Pytorch- Maximum memory bandwidth and batches per second . . " .
RNNoise - Maximum memory bandwidth and inverse seconds

-

3
o
w

=
3

o

©

-
& w L]
g 50 . Configuration 2 O o ——d
H . § o1 —
s ® Resnet-50 2 . . Configuration
g 40 o Efficientnet v2_| o M © 26 Min Talking Sample
8 ° Resnet-152 2 00
gy . o © Resnel §
= £
5
@ 20 o o . e -0.1
__‘_".‘,.4
10 o . 0.2
o 0 0 10t 102 10°
N Max Memory Bandwidth [GB / s]
Max Memory Bandwidth [GB / s]
spaCy - Maximum memory bandwidth and tokens per second Tensorflow - Maximum memory bandwidth and images per second
4000
2000
.
o 3000 -
§ § 1500 Configuration
& 2000 Configuration & o AexNet
5 5 GoogleNet
g o en_core_web_trf g °
< 1000 © - o 1000 © ResNet-50
S o o © 8 ® VGG-16
g 2
S
] 0 £ 500
-1000 :d_q.—/_’-—.
0
10! 102 10% 10! 102) 10°
Max Memory Bandwidth [GB / s] Max Memory Bandwidth [GB / s]
() 8)
Tensorflow Lite - Maximum memory bandwidth and inverse seconds ~ Whisper.cpp - Maximum memory bandwidth and inverse seconds
700 o
0015
600
500 \d w
8 Bo.010
5 d S . .
g 400 1 3 () Configuration 2 ° ° Configuration
° A © Mobilenet Float ° — | o ggml-base.en
830 e . . o Mobilenet Quant £0.005 . - o ggml-medium.en
2200 - o NASNet Mobile E < . —° | o gomismalien
o O]
° > 0.000 O 2
100 -
® °
o O
10! e 100 102 108
Max Memory Bandwidth [GB / 5] Max Memory Bandwidth [GB / s]

(k))

Fig. 8: Dependency of CPU performance from memory bandwidth in ML tasks
within each test suite

68

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru/pavt

FP32 Performance On the Figure 9 there are plots with results in benchmarks
and FP32 performance. In most cases, processors with higher FP32 performance

show better results in ML tasks.

Caffe - FP32 and inverse seconds

8
7
46
c
S5)
2 Configuration
E 4 5 e AlexNet
@ o GoogleNet
Z3 e o
= oo o
e o® °
2 L]
L]
ot goed C 2
! ;J—ﬁowp—&ﬁ—————‘o
e L] L]
0
102 10°
FP32 [GFLOPS]
(a)
LiteRT - FP32 and inverse seconds
1500
1250
., 1000 °
K Configurati
s 750 onfiguration
o e Deeplab V3
o 500 Quantized COCO
i © SSD MobileNet v2
g 250 .
=, | = o Mobilenet Float
-250
-500
102 10%
FP32 [GFLOPS]
(c)
os Numenta - FP32 and inverse seconds
0.3
" Configuration
€ Contextual Anomaly
S0 © Detector OSE
3 o KNNCAD
o o Bayesian Changepoint
@ ® EXPoSE
g0l e Earthgecko Skyline
© Relative Entropy
o Windowed Gaussian
0.0

10°
FP32 [GFLOPS]

(e)

69

LeelaChessZero - FP32 and nodes per second

10000
T 8000
o
IS
&
5 6000 Configuration
e ® BLAS
@ N
< 4000 o Figen
(<}
=
2000
0
10? 10°
FP32 [GFLOPS]
MLPack - FP32 and inverse seconds
0.200
0.175
0.150
w
°
£0125)
I Configuration
£0.100 e scikit_ica
@ [} -
g o scikit_qda
0.075 - N
E . ° o scikit_svm
0.050 P
e “' e . .
0.025 s "' ° ".’ _-_._,.—':
(J
0.000
102 10°
FP32 [GFLOPS]
OpenCV - FP32 and inverse seconds
0.07
0.06 .
2005 Configuration
S 2 e Core
$0.04) e . o DNN
b4 ° ° o Features 2D
£0.03 N o Graph APl
@
H H ° o Image Processing
2 H °
=002 | g o) ° o e Object Detection
2 o Stitching
0.01
ad $
0.00
102 10°

FP32 [GFLOPS]

(f)

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

Batches per second
BN W s U oo N
o 68 88 8 88 3 8

5000

4000

3000

Tokens per second

2000

1400

1200

® o
3 3
s 3

Inverse seconds
o
3
5

agora.guru.

Pytorch - FP32 and batches per second

Configuration

pe ® Resnet-50
o Efficientnet v2_|
® Resnet-152
%
°
102 10°

FP32 [GFLOPS]

(8)

spaCy - FP32 and tokens per second

Configuration
® en_core_web_trf

10°
FP32 [GFLOPS]

(i)

Tensorflow Lite - FP32 and inverse seconds

Configuration
e Mobilenet Float
© Mobilenet Quant
o NASNet Mobile

FP32 [GFLOPS)

(k)

ru/pavt

RNNoise - FP32 and inverse seconds

Configuration
® 26 Min Talking Sample

0.04
10°
FP32 [GFLOPS]
Tensorflow - FP32 and images per second
500
°
400
2 .
S Configuration
2 300 ® AlexNet
g,_ o GoogleNet
2 200 ® ResNet-50
o o VGG-16
&
E
100
0
10? 10°
FP32 [GFLOPS]
Whisper.cpp - FP32 and inverse seconds
°
0.006
0
0.005
«
B
50.004
9 Configuration
20003 | * o o ggml-base.en
4 o ggml-small.en
° -
Zoo0z o ggml-medium.en
0.001 | e
- —
0.000
2x102 3x1024x10° 6x 10 10°

FP32 [GFLOPS]

V)

Fig.9: Dependency of CPU performance from FP32 performance in ML tasks
within each test suite

Base clock On the Figure 10 there are plots with results in benchmarks and
base clock. In most cases higher clock rate gives better performance, but there
are exceptions (e.g.Tensorflow and LeelaChessZero).

70

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru/pavt

Caffe - Base clock and inverse seconds

25
2.0
)
=
<
8
@15 Configuration
o ® AlexNet
§ e GoogleNet
c
— 10
0.5
2.0 25 3.0 35 4.0
Base Clock [GHz]
(a)
LiteRT - Base clock and inverse seconds
°
1250
1000
B
5 750 Configuration
9 e DeeplabV3
® 500 © Mobilenet Float
i Quantized COCO
2 20 SSD MobileNet v2
2
= o SqueezeNet
0
-250
2.0 2 3.0 35 4.0 45
Base Clock [GHz]
(c)
Numenta - Base clock and inverse seconds
0.25 °
hd L]
0.20 o
Configuration
ﬁ . . e Bayesian Changepoint
5015 Contextual Anomaly
.
3 Detector
@ © Earthgecko Skyline
5o.10 © KNNCAD
H ® Relative Entropy
© Windowed Gaussian
0.05 o EXPOSE
0.00
20 25 30 35 40 45
Base Clock [GHz]
(e)
Pytorch - Base clock and batches per second
°
50
2w
9 Configuration
o 2 ® Resnet-50
2 o Efficientnet v2_|
9 o Resnet-152
S22
ket
@
10
0

3.0
Base Clock [GHz]

(8)

35 4.0

71

LeelaChessZero - Base clock and nodes per second

10000

3
1<}
S
S

6000

Nodes per second
8
3
8

0.09

‘ L]
°
® L]
L]
Configuration
e o BLAS
o Eigen

2.0 25 3.0 35 4.0
Base Clock [GHz]

(b)

MLPack - Base clock and inverse seconds

e 2o 2
o o o
G o <

Inverse seconds
=
°
2

Configuration
@ scikit_svm
o scikit_ica

o scikit_qda

15 4.0

20 25 3.0 35
Base Clock [GHz]

(d)

OpencCV - Base clock and inverse seconds

0.08

Inverse seconds
o o
> °
R =3

o
S
=

0.00

Configuration
Core
DNN
Features 2D
Graph AP
Image Processing
Object Detection
Stitching

Inverse seconds

3.0 35 4.0 4.5
Base Clock [GHz]

(f)

RNNoise - Base clock and inverse seconds

Configuration
26 Min Talking Sample

2.0

25 3.0 35

Base Clock [GHz]

(h)

4.0 4.5

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru,/pavt

Tensorflow - Base clock and images per second
spaCy - Base clock and tokens per second

1200

3000 .
o L]
1000
2500
°
2 S 800 . Configuration
S 2000 S °
@ | 2 o ResNet-50
a Configuration N 600 AlexN
3 o en_core_web_trf a ¢ AlexNet
2 1500 * X - > o GoogleNet
S ° S 400 o VGG-16
£ o 3
© 1000 L E
¥ o 200
L]
500
o %% 0
20 25 30 35 40 45
Base Clock [GHz] 20 25 30 35 40 45
Base Clock [GHz]
® §),
Tensorflow Lite - Base clock and inverse seconds Whisper.cpp - Base clock and inverse seconds
1000 ° °
.
° 0.0150
800
0.0125
7y oy
B B
5 600 ! 0.0100 !
o Configuration g Configuration
H © Mobilenet Float H e ggmi-base.en
@ 400 o Mobilenet Quant 0.0075 o ggmi-small.en
2 © NASNet Mobile g © ggmi-medium.en
£ £0.0050
200
0.0025
o LYY
J
0.0000 L —
2.0 45 2.0 2

25 3.0 3.5 4.0 3.0 3.5 4.0
Base Clock [GHz] Base Clock [GHz]

(k) 1)

Fig. 10: Dependency of CPU performance from base clock in ML tasks within
each test suite

Threads number On the Figure 11 there are plots with results in benchmarks and
threads number. In some suites, more threads give better performance, but there
are opposite cases. This may be due to the fact that the tests may have been
run in single-threaded or multithreaded mode. However, not all suites specify
testing mode.

Caffe - Threads and inverse seconds LeelaChessZero - Threads and nodes per second
° 20000
25
17500
L]
20 = o o 15000
v ° =
. —‘\H\. E 5o
S o o) 9 X
4 10 e Configuration 5 10000 Configuration
2 [e AlexNet % e Eigen
2 - Py
[e g © ® GoogleNet L 7500 o BLAS
= 2
5000
0.0
2500
-0.5
0
22 23 28 25 26 o7 28 22 25 27 29
Threads Threads

(a) (b)

72

Hapannresvrve suvucaumenvrvie mexnorozuu (IIaBT’2025) || Parallel computational technologies (PCT’2025)

agora.guru.ru/pavt

MLPack - Threads and inverse seconds

LiteRT - Threads and inverse seconds
800
0.06 °
600 °
L
400 1, 0.05 * °
3 X b 8 ® o
5 200 Configuration S Te .
o e Deeplab V3 § 0.04 Conﬁguratwon
® 0 o Mobilenet Float ° e scikit_ica
g , Quantized COCO 4 o scikit_qda
2200 SSD MobileNet v2 B 0.03 s scikit sym
= o SqueezeNet £
—400 — 0.02
—600
0.01
2 2 2 2 27 2
Threads 2! 22 22 24 25 28 27 28
Threads
(c) (d)
Numenta - Threads and inverse seconds OpenCV - Threads and inverse seconds
04 0.08
03 Configuration 0 0.06 - Configuration
'g . 2aye5|an Cr/\:ngeplamt ‘g o Core
ontextual Anomaly
2 ® Detector OSE 004 o o 8 e DNN
0.2 - 8 o Features 2D
Y o Earthgecko Skyline 9 L=
b o KNNCAD g | | o Graph API
H o Relative Entropy 200 O v | o Image Processing
0.1 ® Windowed Gaussian ! ! Py I @ Object Detection
o EXPoSE g4 o ° o o Stitching
0.00 LA —
0.0
FI I N A A
Threads
Pytorch - Threads and batches per second
4 P RNNoise - Threads and inverse seconds
€0
02
50
o g0 o [=
i ° 01
° als .] °
g 40 v s Configuration 'g
T ————1 e Resnet50 S 00 Configuration
2 30 —— ° © Efficientnet v2_| 2 © 26 Min Talking Sample
9 ® Resnet-152 g
S 2 e 'y . 2 -01
T
@ _O__'__._'./t/.
10 v -02
g *] T T v
0 P I R
2 3 a s g 7 3
2 2 2 2 2 2 2 Threads
Threads
Tensorflow - Threads and images per second
spaCy - Threads and tokens per second
4000 2000
3500 1750
3000 T 1500
o N
s 5 Configuration
S
@ 2500) @ 1250 o AlexNet
@ Configuration o ® GoogleNet
I} ® en_core_web_trf 2
52000 O = 1000 o ResNet-50
c @ ~
§ 1500 & 70 o VGG-16
e E
1000 ®
° °
500 *
°

2 P 2 P 2 27 2
Threads
Threads

(i) ()

73

[apanrneavroie svvuciumenvroe mexnoso2uy (11aBT’2025)

Parallel computational technologies (PCT’2025)

agora. gury.ru,/pavt

Tensorflow Lite - Threads and inverse seconds Whisper.cpp - Threads and inverse seconds
oK)
600 - 0.06
0.05
B B
S £0.04
9 Configuration 9 Configuration
o ® Mobilenet Float 20.03 o ggml-base.en
|4 o Mobilenet Quant |4 ggml-medium.en
E © NASNet Mobile E 0.02 e ggml-small.en
0.01 o *° &
T O P . e = —
0.00 ¥ Y
2 2 2 2k 27 2 2 2° 2 27 2
Threads Threads

(k))

Fig.11: Dependency of CPU performance from threads number in ML tasks
within each test suite

4.3 Results for other GPU test suites

This subsection provides graphs showing the dependencies between graphics card
specifications and benchmark results within each test suite. When comparing
GPU benchmark results in Caffe and in Llama.cpp, some dependencies are ob-
served. For example, the higher the number of cores in GPU, the higher the
performance in ML tasks. The same is true for clock rate, FP32 performance
and memory bandwidth of GPU.

Caffe - Base clock and inverse seconds

Llama.cpp - Base clock and tokens per second

0.15 . 12000

10000
Configuration
o LUama-3.1-Tulu-3-88-Q8_0
Mistral-7B-Instruct-v0.3-Q8_0
S granite-3,0-3b-a800m-
o © instruct-Q8_0

Configuration
o AexNet
GoogleNet

4
8
g

Tokens per second
2
2
g
H
.

Inverse seconds
c o
o
15
L]
/
J L

o
8
2
g
g
g
d
.
\u
.

0.00 2000

1400 1600 1800 2000 2200
Base Clock [MHz]
1400 1600 1800 2000 2200

Base Clock [MHz]
(a)

Fig.12: Dependency of GPU performance from cores number in ML tasks in
Caffe and Llama.cpp suites

(b)

4.4 Results for MLPerf HPC Training

This section presents the key dependencies of computational device character-
istics on the performance metrics defined in the previous section. The analysis

74

[apaarenvhoie sviiuciumenvroe mexnonozuu (IlaBT’2025) || Parallel computational technologies (PCT’2025)

agora. gury.ru,/pavt

Caffe - Cores and inverse seconds

Llama.cpp - Cores and tokens per second

0.25

12000

0.20
10000 Configuration
o5 Configuration e Uama-3.1Tulu-3-88-Q8_0

Inverse seconds

-
2
§
g
@
® AexNet g 8000 Mistral-7B-Instruct-v0.3-Q8_0
GoogleNet w granite-3.0-3b-a800m-
2 © instruct-Q8_0
° £ 000 N
0.10 - g
4000
0.05 .,_// .
n 24
Cores
o1 o1 13 Ju
Cores (b)
(a)

Fig. 13: Dependency of GPU performance from clock rate in ML tasks in Caffe
and Llama.cpp suites

Caffe - Memory bandwidth and inverse seconds

Llama.cpp - Memory bandwidth and tokens per second

0.16
18000

0.14 16000

0.12 14000
] o
2 S 12000 Configuration
S 0.10 o Configuration g o LUama-3.1Tulu-3-83-08_0
g e AlexNet i 10000 Mistral-78-Instruct-v0.3-Q8_0
w 0.08 G leNet b granite-3.0-3b-a800m-
2 oogiele g 000 © instruct-Q8_0
@ i) -
E 0.06 6000
4000
004 ©
2000
0.02
600 800 1000 1200 1400 1600 1800
Memory Bandwidth [GB/s]
200 400 600 800 1000
Memory Bandwidth [GB/s] (b)
(a)

Fig. 14: Dependency of GPU performance from memory bandwidth in ML tasks
in Caffe and Llama.cpp suites

includes graphical representations illustrating the relationships between CPU
and GPU parameters. The presented graphs provide a comparative evaluation
of computing platforms used in MLPerf HPC Training benchmarks, demonstrat-
ing performance scaling trends across different supercomputing configurations.
The open dataset provided by MLCommons [20] contains performance mea-
surements obtained from supercomputers, which may either rely solely on CPU
resources or employ a hybrid configuration combining both CPU and GPU com-
ponents. Due to the limited number of runs conducted exclusively on CPUs, a
comprehensive analysis based solely on such data would be insufficient. There-
fore, in the presented diagrams, these data points are considered alongside results
from hybrid configurations. For hybrid systems, an approximate share of CPU
performance is estimated based on the ratio of FLOPS contributions within the
system. Similarly, in the case of GPUs, all recorded runs inherently involve a hy-

75

Caffe - FP32 and inverse seconds

Llama.cpp - FP32 and tokens per second
0.30

0.25 12000

0.20 10000 s Configuration
o Uama-3.1-Tulu-3-88-Q8_0

8000 Mistral-7B-Instruct-v0.3-Q8_0

_ granite-3.0-3b-a800m-

® instruct-Q8_0

Configuration
015 ® AlexNet
B GoogleNet

6000

Inverse seconds
Tokens per second

0.10 .

4000
0.05

40 60 80 100
FP32 [TFLOPS]
20 40 60 80

FP32 [TFLOPS]
(a)

Fig. 15: Dependency of GPU performance from FP32 performance in ML tasks
in Caffe and Llama.cpp suites

(b)

brid setup utilizing both CPU and GPU resources. Thus, an analogous approach
is applied to estimate the GPUs contribution to the overall system performance.

Fig. 16 presents performance diagrams for CPU and GPU, showing their
dependency on the balance metric. This metric is defined as the ratio of compu-
tational performance (for CPU or GPU) to the peak memory bandwidth of the
respective device. It is important to note that, due to the lack of exact memory
bandwidth data for the devices used in the performance test, an assumption was
made that the maximum possible bandwidth, based on the specifications pro-
vided by the manufacturers for computing devices, can be used as a proxy. This
assumption may affect the precision of the balance calculations but provides a
reasonable baseline for comparative analysis.

Potential peak performance to CPU model balance Potential peak performance to GPU model balance
& CPU Model _ * GPU Model
g —e— Intel Xeon E5-2690 v3 2100 —@~ NVIDIA A100 SXM4 40 GB
2 Intel Xeon Platinum 8358 9 NVIDIA A100 SXM4 80 GB
£ 10° - Intel Xeon Platinum 8368 = ° -4~ NVIDIA P100 PCIE 16 GB.
Y . A Intel Xeon Platinum 8480C b A NVIDIA A100 PCIE 40 GB
2 —— ~¥- AMD EPYC 7402 g A # | % NVIDIA AL00 PCIE 80 GB
2 ~# AMD EPYC 7742 5 ~# NVIDIA H100 HBM3 80 GB
s v AMD EPYC 7713 £
< s
T 100 % AMD EPYC 7763 e
a FUJITSU AB4FX g
x
s x
& A H
&
o S o o o 10°
§ & & g %
K K K RN 3§ R © Y o
Balance for CPUs (TFLOPS/B) Balance for GPUs (TFLOPS/B)
(a) (b)

Fig. 16: Dependencies of computing device model potential peak performance to
balance metric based on results gained for all MLPerf HPC Training scenarios
for CPU (a), for GPU (b)

The diagrams on the Fig. 17 showing the dependencies of CPU potential
performance on the balance, now divided by the MLPerf HPC Training scenarios

76

help to highlight more clearly the relationships between CPU performance and
memory bandwidth. The data is aggregated across all MLPerf HPC Training
versions, from v1.0 to v3.0. The scenario-specific separation may be crucial, as
different scenarios impose varying levels of computational demand on the system.
This division allows for a more precise understanding of how each scenario affects
CPU performance.

Potential peak performance to CPU model balance Potential peak performance to CPU model balance
& CPU Model @ . * CPU Model
& ~@- Intel Xeon E5-2690 v3 & 10t ~®@- Intel Xeon E5-2690 v3
2 10° Intel Xeon Platinum 8358 e Intel Xeon Platinum 8358
E ~#- Intel Xeon Platinum 8368 e * ~#- Intel Xeon Platinum 8368
g A Intel Xeon Platinum 8480C g v A Intel Xeon Platinum 8480C
£ ~¥- AMD EPYC 7402 < ~¥- AMD EPYC 7402
£ 100 M -4 AMD EPYC 7742 £ -4 AMD EPYC 7742
s L= AMD EPYC 7713 K AMD EPYC 7713
5 % AMD EPYC 7763 T - AMD EPYC 7763
g FUIITSU AB4FX o FUJITSU AB4FX
% ol ® K .
910 . £10° A
S & & & & 09& Q&Q s? $° $°
o of o o o
Balance for CPUs (TFLOPS/B) Balance for CPUs (TFLOPS/B)
(a) (b)

Potential peak performance to CPU model balance Potential peak performance to CPU model balance

s
710 * CPU Model @ * CPU Model
& ~@- Intel Xeon E5-2690 v3 & ~@- Intel Xeon E5-2690 v3
= * Intel Xeon Platinum 8358 & Intel Xeon Platinum 8358
E #.| @ Intel Xeon Platinum 8368 E @~ Intel Xeon Platinum 8368
g A Intel Xeon Platinum 8480C g A Intel Xeon Platinum 8480C
< v ~¥- AMD EPYC 7402 < ~¥- AMD EPYC 7402
£ -# AMD EPYC 7742 £ -4 AMD EPYC 7742
S AMD EPYC 7713 S AMD EPYC 7713
S 100 . - AMD EPYC 7763 510t i % AMD EPYC 7763
e FUJITSU AB4FX o FUJITSU ABAFX
x x
] s
& N &

& &> & o> o & &> & o o
N o® o° o o o N N o° o
Balance for CPUs (TFLOPS/B) Balance for CPUs (TFLOPS/B)
(c) (d)

Fig. 17: Dependencies of CPU model potential peak performance to balance met-
ric based on results gained for separate MLPerf HPC Training scenarios Cos-
moflow (a), DeepCAM (b), OpenCatalyst (c), OpenFold (d)

When analyzing systems where all CPU-based configurations exhibit Balance
0.025 TFLOPS/B, it can be inferred that the evaluated workloads in bench-
marks like MLPerf HPC are likely compute-bound rather than memory-bound.
A low Balance value implies that the systems peak computational throughput is
small relative to its memory bandwidth. The Y-axis in the discussed plots ranks
CPUs by theoretical compute power, with higher values indicating superior per-
formance for compute-bound tasks.

Similarly, Fig. 18 shows diagrams depicting the dependencies of GPU po-
tential performance on the balance, with data separated by the MLPerf HPC
Training scenarios. This separation offers a clearer view of how GPU performance
relates to memory bandwidth. The results are aggregated across all MLPerf HPC
Training versions, from v1.0 to v3.0. By distinguishing between the scenarios,
the diagrams provide a more detailed picture of how GPU performance scales
with memory bandwidth under different workloads.

7

Potential peak performance to GPU model balance Potential peak performance to GPU model balance
_ L] GPU Model _ " . * GPU Model
{ ~®~ NVIDIA AL00 SXM4 40 GB g2xao ~@- NVIDIA A100 SXM4 40 GB
9 NVIDIA A100 SXM4 80 GB 9 NVIDIA A100 SXM4 80 GB
= ~&- NVIDIA P100 PCIE 16 GB E ~- NVIDIA P100 PCIE 16 GB
b - NVIDIA A100 PCIE 40 GB b A" NVIDIA A100 PCIE 40 GB
g ~¥- NVIDIA A100 PCIE 80 GB S s * |~ NVIDIA AL00 PCIE 80 GB
RS -4 NVIDIA H100 HBM3 80 GB g 4 NVIDIA H100 HBM3 80 GB
E E 5
s s
€ €
2 g6x10
x * x
] 3
& " & "
6x10 'S 4x104 -y
R & > © Y ' R & > R
Balance for GPUs (TFLOPS/B) Balance for GPUs (TFLOPS/B)
(a) (b)
Potential peak performance to GPU model balance Potential peak performance to GPU model balance
— * GPU Model 100 + GPU Model
92 ~®— NVIDIA A100 SXM4 40 GB g ~®— NVIDIA A100 SXM4 40 GB
S NVIDIA AL00 SXM4 80 GB] NVIDIA AL00 SXM4 80 GB
£ 106 . -9~ NVIDIA P100 PCIE 16 GB E . -9~ NVIDIA P100 PCIE 16 GB
b A NVIDIA A100 PCIE 40 GB G oxw A~ NVIDIA A100 PCIE 40 GB
4 ~¥- NVIDIA A100 PCIE 80 GB & ~¥- NVIDIA A100 PCIE 80 GB
5 ~# NVIDIA H100 HBM3 80 GB & 4 NVIDIA H100 HBM3 80 GB
£ £4x10°
s s
*
5 T3x10° &
g N g
x x
© T
9 3
& & 2x10°
~ ~ > ~ N > ~ SN LR P
Balance for GPUs (TFLOPS/B) Balance for GPUs (TFLOPS/B)
(c) (d)

Fig. 18: Dependencies of GPU model potential peak performance to balance
metric based on results gained for separate MLPerf HPC Training scenarios
Cosmoflow (a), DeepCAM (b), OpenCatalyst (c), OpenFold (d)

A Balance value of 20 TFLOPS/B and lower can be treated as exceptionally
low for GPUs, indicating severe memory-bound limitations. When Balance falls
to 20 or lower, the memory subsystem becomes a critical bottleneck, leaving
compute resources underutilized due to insufficient data supply. On a Peak Per-
formance vs. Balance graph, the most capable GPUs for all scenarios whether
compute-heavy training or memory-sensitive inference cluster in the upper-right
quadrant. This region represents optimal hardware balance: high computational
power (Y) paired with efficient memory bandwidth utilization (X).

The diagrams presented in Fig. 19 illustrate the relationships between CPU
characteristics and the relative performance of a single CPU, as calculated ac-
cording to the methodology outlined in the previous section. The results are
aggregated by MLPerf HPC Training scenarios and versions, with a global trend
displayed for each individual scenario. Notably, these diagrams highlight a sig-
nificant increase in performance as the number of CPU cores or the size of the
L3 cache grows.

5 Conclusion

In this work, we investigated the efficiency of a highly demanded class of machine
learning (ML) tasks on different types of processors and graphics accelerators.
As benchmarks, we employed the AI-Benchmark suite, the MLPerf HPC bench-
marks (including the training scenarios Cosmoflow, DeepCAM, OpenCatalyst,

78

Performance to CPU core number relation Performance to L3 cache relation
1.000 o

1.000

Legend
O Miperfvio

°

8
°
s
8

°
2
s

0.010

Relative CPU performance

Relative CPU performance

IR ® ©
I &

<& %
L3 cache size (MB)

i
CPU core number
(a) (b)

Fig. 19: Dependencies of relative performance impact of a single CPU based on
its characteristics, such as core count (a) and L3 cache size (b)

and OpenFold), as well as a variety of tasks from LeelaChessZero, MLPack, Nu-
menta, Whisper, Caffe, and Llama. Separate analyses of processor-based compu-
tation and GPU-based computation were conducted to provide a comprehensive
performance overview.

From our extensive analysis of a wide range of ML tasks and software pack-
ages, we demonstrated that these workloads typically fall into the compute-
bound category across both central processing units (CPUs) and graphics pro-
cessing units (GPUs). In particular, the AI-Benchmark results revealed stark dif-
ferences in the efficiency of Intel versus AMD processors, also highlighting that
processor characteristics have a substantial impact on performance. A Roofline
analysis of the AI-Benchmark further confirmed that these ML tasks are compute-
bound when run on GPUs; however, it also showed that GPU efficiency still re-
quires significant improvement to fully realize their potential for ML workloads.

In contrast, hybrid benchmarks from MLPerf, which handle large datasets
from diverse domains, tend to shift more toward memory-bound behavior. Our
analysis also demonstrated very decent scalability with respect to both the num-
ber of CPUs and the number of GPUs across all considered MLPerf HPC bench-
marks, emphasizing the importance of resource scalability for achieving optimal
performance in HPC-based machine learning.

Understanding the interplay between different compute devices and the na-
ture of ML tasks is crucial for selecting the optimal hardware platform to achieve
rapid and efficient high-performance computing for ML. The findings on task
type, device-specific performance, and overall efficiency provide valuable insights
for guiding hardware choices in future HPC-based ML deployments.

6 Acknowledgments

The research was financially supported by the Russian Science Foundation (project
No. 20-71-10127), https://rscf.ru/project/20-71-10127/. The part of work per-
formed on the computational resources of HPC facilities at HSE University [17]
were carried out by G.Promyslov within the framework of the Basic Research
Program at HSE University.

79

References

10.

11.
12.

13.
14.

15.

16.

17.

18.

. Machine Learning Test Suite Collection - OpenBenchmarking.org. https://

openbenchmarking.org/suite/pts/machine-learning

Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for Large-Scale
machine learning. In: 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265-283 (2016)

Behler, J.: Representing potential energy surfaces by high-dimensional neural net-
work potentials. J. Phys.: Condens. Matter 26(18), 183,001 (2014)

Benedict, S.: Energy-aware performance analysis methodologies for HPC architec-
tures - An exploratory study. Journal of Network and Computer Applications
35(6), 1709-1719 (2012)

Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pp. 785-794 (2016)

Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. The
International Journal of High Performance Computing Applications 30(1), 3-10
(2016)

Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurrency and Computation: practice and experience 15(9), 803—-820
(2003)

Dunn, B.: Optimizing high performance computing systems, resource utilization
and throughput by leveraging machine learning. Ph.D. thesis (2021)

Farrell, S., Emani, M., Balma, J., et al.: MLPerf HPC: A Holistic Benchmark Suite
for Scientific Machine Learning on HPC Systems. In: 2021 IEEE/ACM Workshop
on Machine Learning in High Performance Computing Environments (MLHPC),
pp. 33-45 (2021). doi:10.1109/MLHPC54614.2021.00009

Gigli, L., Goscinski, A., Ceriotti, M., Tribello, G.A.: Modeling the ferroelectric
phase transition in barium titanate with DFT accuracy and converged sampling.
Phys. Rev. B 110(2), 024,101 (2024)

Goodfellow, I.: Deep learning, vol. 196. MIT press (2016)

How, W.B., Chong, S., Grasselli, F., et al.: Adaptive energy reference for machine-
learning models of the electronic density of states. Phys. Rev. Mater. 9(1), 013,802
(2025)

Ignatov, A.: Ai-benchmark website. https://ai-benchmark.com

Ignatov, A., Timofte, R., Chou, W., et al.: Ai benchmark: Running deep neural
networks on android smartphones. In: Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pp. 0-0 (2018)

Jouppi, N.P.; Young, C., Patil, N., et al.: In-datacenter performance analysis of a
tensor processing unit. In: Proceedings of the 44th annual international symposium
on computer architecture, pp. 1-12 (2017)

Kocer, E., Ko, T.W., Behler, J.: Neural network potentials: A concise overview of
methods. Ann. Rev. Phys. Chem. 73(1), 163-186 (2022)

Kostenetskiy, P., Chulkevich, R., Kozyrev, V.: HPC resources of the higher school
of economics. In: Journal of Physics: Conference Series, vol. 1740, p. 012050. IOP
Publishing (2021)

Liu, Y., Niu, C., Wang, Z., Gan, Y., Zhu, Y., Sun, S., Shen, T.: Machine learning
in materials genome initiative: A review. J. Mater. Sci. Tech. 57, 113-122 (2020)

80

19.

20.

21.

22.

23.

24.

Mattson, P., Reddi, V.J., Cheng, C., et al.: MLPerf: An industry standard bench-
mark suite for machine learning performance. IEEE Micro 40(2), 8-16 (2020)
MLCommons: MLPerf HPC Training Benchmarks (2025). URL https://
mlcommons.org/benchmarks/training-hpc/. Accessed: 2025-02-04

Paszke, A., Gross, S., Massa, F., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32 (2019)

Raju, M., Gulhane, K., Gulshan, B.A., et al.: Architectures of high-performance
computing systems for machine learning workloads. In: Integrating Machine Learn-
ing Into HPC-Based Simulations and Analytics, pp. 435-460. IGI Global Scientific
Publishing (2025)

Wang, H., Zhang, L., Han, J., Weinan, E.: DeePMD-kit: A deep learning package
for many-body potential energy representation and molecular dynamics. Comp.
Phys. Comm. 228, 178-184 (2018)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM 52(4),

65-76 (2009)

81

	Короткие статьи
	G. Promyslov, A. Efremov, Y. Ilyasov, V. Pisarev, A. Timofeev

