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Abstract. This paper investigates the application of Physics-Informed
Neural Networks (PINNs) for solving the inverse advection-diffusion prob-
lem to localize pollution sources. The study focuses on optimizing neural
network architectures to accurately model pollutant dispersion dynam-
ics under diverse conditions, including scenarios with weak and strong
winds and multiple pollution sources. Various PINN configurations are
evaluated, showing the strong dependence of solution accuracy on hy-
perparameter selection. Recommendations for efficient PINN configura-
tions are provided based on these comparisons. The approach is tested
across multiple scenarios and validated using real-world data that ac-
counts for atmospheric variability. The results demonstrate that the pro-
posed methodology achieves high accuracy in source localization, show-
casing the stability and potential of PINNs for addressing environmental
monitoring and pollution management challenges under complex weather
conditions.

Keywords: Physics-Informed Neural Networks · Inverse problem ·Advection-
diffusion process

1 Introduction

Weather forecasting and solving related challenges represent some of the most
complex areas in meteorology. Numerical models, such as global circulation mod-
els [1], require significant computational resources to accurately describe atmo-
spheric processes. However, these approaches often struggle with predicting local
weather parameters, particularly in regions with limited observational data or
sparse meteorological station networks. This limitation is especially critical when
describing the migration of pollution in the atmosphere, where accurate model-
ing is essential for understanding pollutant transport and devising effective air
quality management strategies [2].

Currently, numerous technology companies are leading the development of
local and regional air quality monitoring systems. In industrial emission moni-
toring, well-established solutions exist that enable automatic control directly at
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the emission source, such as installations on smokestacks. However, several chal-
lenges remain unresolved, including predictive modeling and continuous analysis
of pollutant dispersion, identification of emission sources and causes of maxi-
mum allowable concentration exceedances, as well as proactive monitoring and
reduction of harmful industrial emissions into the atmosphere.

In recent years, machine learning (ML) methods have emerged as promising
alternatives to numerical weather prediction [3], particularly in scenarios where
data-driven approaches can accelerate computationally expensive components.
For instance, physics-incorporated deep-learning frameworks have been devel-
oped to parameterize atmospheric radiative transfer, enforcing energy conserva-
tion laws while improving prediction accuracy [4]. However, a major limitation
of ML models is their dependency on large volumes of high-quality training data.
This challenge is particularly pronounced in regions with sparse meteorological
station networks or when predicting rare events.

A relatively new and innovative approach, Physics-Informed Neural Net-
works (PINNs), addresses this limitation by incorporating physical laws di-
rectly into the model training process [5]. PINNs demand substantial compu-
tational resources, but leveraging parallel computing on GPUs can significantly
enhance their training efficiency and scalability. Unlike traditional neural net-
works, PINNs embed fundamental principles, such as mass, energy, and momen-
tum conservation, into their loss functions. This allows them to use mathematical
representations of physical laws, making them more reliable and accurate.

PINNs have already been successfully applied in fields such as optics, fluid
dynamics, and material science, where they have proven effective in solving
both forward and inverse problems. For example, they have been used to ad-
dress the inverse Navier-Stokes problems [6], groundwater modeling [7], and
advection-diffusion equations [8], although the latter focused on water bodies
rather than atmospheric processes. The ability of PINNs to generalize across
parameter ranges has been particularly demonstrated in nonlinear Schrödinger
equations [9], showing their potential for efficient modeling and prediction across
a broad spectrum of conditions.

Despite these achievements, the application of PINNs to inverse problems
in atmospheric physics, such as pollution source localization, remains under-
explored. While recent studies have attempted to estimate pollutant sources
in rivers using PINNs [8], their performance in turbulent atmospheric environ-
ments — where transport dynamics are significantly more complex — requires
further investigation. The integration of sparse ground-based measurements with
physical constraints offers a unique opportunity to address this gap.

The localization of the pollution source and the modeling of the dispersion
of pollutants are critical to the development of strategies to improve air quality
and mitigate the environmental impact of anthropogenic activities. PINNs, by
integrating data-driven learning with physical modeling, offer a unique oppor-
tunity to tackle this challenge more effectively, even in scenarios with limited
observational data.
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This study focuses on using PINNs to address challenges related to atmo-
spheric pollution, specifically in modeling pollutant dispersion and identifying
pollution sources. By exploring the capabilities of PINNs in this context, we aim
to develop a computational framework that accurately retrieves the coordinates
of pollution sources using ground-based measurements, providing a robust tool
for air quality management and environmental monitoring. Section 2 presents the
theoretical foundations, introducing the governing equation and PINN method-
ology, with particular focus on implementation aspects critical for computa-
tional efficiency. Section 3 addresses the practical implementation, examining
neural network architecture choices that ensure training stability and conver-
gence speed. Section 4 provides a comparative analysis of the method’s perfor-
mance in solving both forward and inverse problems using test cases and real
observational data, demonstrating the practical effectiveness of the approach.

2 Theory

2.1 Problem formulation

The modeling of atmospheric pollution involves understanding the dispersion
of pollutants and identifying their sources. This process is governed by the
advection-diffusion equation, which describes the transport of pollutant con-
centration c in the atmosphere:

∂c

∂t
+ u · ∇c−∇ · (k∇c) = s, (1)

where u is the wind velocity vector, k is the diffusion coefficient, while s is the
pollutant source term.

Assume that the pollutant is released instantaneously at t = 0 from the
source location (x0, y0). The initial concentration field is zero everywhere except
at the source, where it follows a Gaussian distribution:

c(x, 0) = c0 exp

(
− (x− x0)2 + (y − y0)2

2r2

)
, x ∈ Ω, (2)

where c0 is the peak concentration and r controls the initial spread radius.
Homogeneous Dirichlet boundary conditions are imposed:

c(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (3)

For computational simplicity, the wind velocity field u is treated as a, ob-
tained either through observations or as the solution to the Navier-Stokes equa-
tions. The solution of the Navier-Stokes equations using PINNs has been ex-
plored in [10] and is beyond the scope of this study. By treating u as known, we
decouple the problem and focus exclusively on solving the advection-diffusion
equation to model pollutant dispersion.

The forward problem consists of solving the advection-diffusion equation
given the pollutant source term s, the wind velocity field u, and other parameters
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such as k. The goal is to determine the pollutant concentration c as a function
of space and time. Mathematically, the forward problem can be expressed as:

Given u, k, and s, solve for c(x, y, t).

The inverse problem involves determining the unknown source term s, which
describes the location and intensity of pollutant emissions, using discrete ground-
based measurements of the pollutant concentration c. The objective is to identify
s such that the advection-diffusion equation is satisfied for the observed data.
Mathematically, the inverse problem can be formulated as:

Given c(x, y, t) (measured data), solve for s(x, y).

Nondimensionalization of equations is a common procedure to convert them
into dimensionless variables. This approach simplifies the analysis of the problem
and ensures that all terms in the equation are of the same order of magnitude.
As shown in [9,11], nondimensionalization can have a positive impact on the
convergence of PINNs. By ensuring that the terms in the equation are balanced,
the sensitivity of the loss function becomes equal for all PDE terms, leading to
more stable and efficient training. When scaling the advection-diffusion equation,
we use characteristic values for concentration C , length L, and velocity U . The
dimensionless variables are defined as follows:

c∗ =
c

C
, u∗ =

u

U
, t∗ =

tU

L
. (4)

Substituting these dimensionless variables into Eq. (1) yields:

∂c∗

∂t∗
+ u · ∇c∗ − 1

Pe
∇2c∗ = s, (5)

where Pe is the Peclet number, given by

Pe =
LU

k
. (6)

2.2 PINN methodology

Here we briefly summarize the principles of PINN. PINN is a machine learning
approach that combines data-driven learning with physical laws expressed as
PDEs. Unlike traditional neural networks, which rely solely on data for training,
PINNs embed governing physical equations directly into their loss function. This
ensures that the solutions not only fit the observed data but also satisfy funda-
mental physical principles. In this study, we apply the PINN framework to solve
the advection-diffusion equation (1). In this case, PINN takes spatial coordinates
(x, y) and time t as input and predicts the pollutant concentration c(x, y, t) as
output. In this way, PINN approximates the solution to the advection-diffusion
equation:

cPINN(x, y, t; θ),
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where θ represents the trainable parameters (weights and biases) of the neural
network.

The loss function in a PINN framework is designed to enforce both data
consistency and physical law adherence. It consists of three primary components
listed below.

1. PDE residual loss ensures that the predicted solution satisfies the advection-
diffusion equation:

EPDE =
1

Ncollocation

Ncollocation∑

i=1

∣∣∣∣
∂cPINN

∂t
+ u · ∇cPINN −∇ · (k∇cPINN)− sPINN

∣∣∣∣
2

.

(7)
Here, Ncollocation represents the number of collocation points in the domain.

2. Data loss minimizes the discrepancy between the predicted and observed
pollutant concentrations at ground-based measurement points:

Edata =
1

Ndata

Ndata∑

i=1

|cPINN(xi, yi, ti; θ)− cobs(xi, yi, ti)|2 , (8)

where cobs denotes the observed concentration values and Ndata is the number
of measurement points.

3. Loss of the boundary and initial condition ensures that the solution satisfies
the boundary and initial conditions of the problem:

EBC =
1

Nboundary

Nboundary∑

i=1

|cPINN(xi, yi, t = 0)− cboundary(xi, yi)|2 . (9)

In the PINN method, initial conditions are formally treated as a special
case of boundary conditions since the temporal coordinate t is included among
the spatial variables. This allows both types of conditions to be accounted for
uniformly in the loss function. The total loss function minimized during the
training is a weighted combination of these components:

Etotal = λPDEEPDE + λdataEdata + λBCEBC, (10)

where λPDE, λdata, and λBC are weights balancing the contributions of each
term. Depending on the type and formulation of the problem, certain terms in
the equation may not be used. For example, in the forward problem, the term
corresponding to data losses Edata may be omitted, while in the inverse problem,
the term related to boundary conditions EBC may be excluded. The training
process involves minimizing the total loss function Etotal using a gradient-based
optimizer such as Adam or L-BFGS. During training the neural network predicts
cPINN for collocation points and measurement points. The loss function is eval-
uated and backpropagated to update the network parameters θ. The schematic
of the PINN architecture is illustrated in Figure 1.
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Fig. 1. Example of a PINN architecture. The network takes spatial coordinates (x, y)
and time t as input and predicts the pollutant concentration c(x, y, t). The loss function
combines data consistency, PDE residuals, and boundary conditions

3 Implementation of PINN

We developed a versatile framework for PINN designed to solve a wide range
of PDEs, including the advection-diffusion equation. This framework is built on
PyTorch. By integrating GPU acceleration, our implementation enables efficient
training and large-scale simulations. The framework is deployed on the high-
performance computing (HPC) cluster at HSE University [12], which provides
the necessary computational resources to handle complex simulations and large
datasets. The network training was conducted on an NVIDIA V100 32 GB SXM
GPU.

It is known that in certain cases, PINNs may fail to converge or produce sub-
optimal results due to issues such as local minima in the loss function, inefficient
parameter optimization, or architectural limitations [13,14]. To address these
challenges, various strategies are implemented in the framework to enhance the
convergence and accuracy of PINN. Next, we discuss some of the most promising
methods.

One way to improve PINN performance is through advanced architectures
like First-Order PINN (FO-PINN) [15]. FO-PINN modifies the standard PINN
by using both the function values and their first derivatives to approximate so-
lutions to PDEs. Unlike traditional PINN, which rely on second derivatives cal-
culated using automatic differentiation, FO-PINN evaluates second derivatives
indirectly using additional neural network outputs and corresponding loss terms.
This approach reduces computational overhead and improves model accuracy.

Another approach to enhancing PINN performance is the Separable PINN
(SPINN) [16]. SPINN represents the target function of multiple variables as a
product or sum of functions of single variables. Instead of using collocation points
across the entire domain, SPINN employs vectors of points along individual axes.
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This separation of variables allows the use of simpler neural networks, reduces
the number of trainable parameters, and improves computational efficiency.

One common reason for PINN convergence issues is the network getting
trapped in local minima of the loss function. A promising strategy to mitigate
this issue is to use sinusoidal mapping of input data [17]. This approach involves
applying a sinusoidal activation function in the first layer:

γ(x) = sin(2π(Wx+ b)), (11)

where W and b are trainable parameters.
The selection of weights in Eq. (10) is another critical factor in improving

PINN convergence. An adaptive algorithm for selecting weights, such as the
one proposed in [18], did not yield significant improvements in our experiments.
During training, weights λ are adjusted to ensure that the terms in Eq. (10) are
of the same order of magnitude. This adjustment not only reduces the residual
error in initial conditions but also improves overall accuracy.

4 Results

4.1 Solution of the forward model

The forward problem involves modeling the distribution of pollutants in a com-
putational domain, given a predefined velocity field. The goal is to use PINN
to simulate the advection and diffusion processes and evaluate their accuracy
in reproducing pollutant dispersion. For our applications, the forward problem
is considered solved successfully if the mean squared error (MSE) between the
PINN-predicted pollutant distribution and the finite element method (FEM) so-
lution remains below 1× 10−3 for all time steps. FEM is chosen as the reference
method due to its well-established accuracy in solving partial differential equa-
tions, making it a reliable benchmark for evaluating PINN performance. Solving
the forward problem first provides valuable insights into the model’s behavior,
simplifying the subsequent solution of the inverse problem.

We iteratively optimized the PINN architecture for the advection-diffusion
equation. Initially, we tuned the architecture parameters manually; however,
for improved results, one could employ stochastic search algorithms as outlined
in [19]. The preliminary results for the PINN, which uses fully connected layers
with 300 neurons per layer applied to the original equation 1, are presented in
Figures 2 and 3. Specifically, Figure 2 shows the components of the loss function
(left) and the total loss (right). The PDE loss curve levels off, suggesting inade-
quate training. Meanwhile, Figure 3 compares the PINN predictions (first row)
to the FEM solutions (second row), along with the absolute error (third row) at
times t = 0, 1, 2, and 3 seconds.

The optimal architecture incorporates First-Order PINN (FO-PINN) with
λ = 1000 for initial and boundary conditions, together with ResNet blocks.
ResNet blocks, which combine linear layers with residual connections, mitigate
vanishing gradient issues and improve training stability. Each layer contains
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Fig. 2. Loss curves of PINN for the advection-diffusion equation

Fig. 3. Comparison of classical PINN results with FEM results for the advection-
diffusion equation, t = 0-3

300 neurons. The weighting factor λ = 1000 was chosen to prioritize initial and
boundary conditions.

The activation functions used are tanhshrink, with the sin 2π activation func-
tion applied to the first input layer. The optimizers used in this study are Adam
and LBFGS, applied in a 50/50 ratio, with the total number of iterations set to
10000. In addition, the nondimensionalization procedure significantly improves
the convergence behavior. From this point onward, all results are reported in
dimensionless terms. The training process takes approximately 8 minutes when
run on a GPU. The average training duration for each scenario examined in the
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following sections was between 5 and 10 minutes. Figure 4 illustrates the tuned
PINN architecture.

Fig. 4. FO-PINN architecture for solving the forward problem of the advection-
diffusion equation

Figure 5 shows the loss curves, while Figure 6 illustrates the obtained so-
lutions. The improved PINN achieves good agreement with the FEM results,
with MSE values ranging from 1 × 10−5 to 1 × 10−6 and mean absolute error
(MAE) values between 1 × 10−2 and 1 × 10−3. These results demonstrate the
effectiveness of the optimized PINN configuration in accurately modeling pollu-
tant dispersion. With the optimal PINN setup in place, we now shift our focus to
the inverse problem of identifying pollution sources using the same framework.

Fig. 5. Loss curves of the improved PINN for the normalized advection-diffusion equa-
tion
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Fig. 6. Results for the forward problem of the normalized advection-diffusion equation:
improved PINN

4.2 Solution of the inverse problem using synthetic data

The inverse problem involves determining the location and characteristics of
an unknown pollution source based on limited observations of pollutant con-
centrations at specific points within the computational domain. This includes
estimating both the coordinates and possibly the intensity of the source. Solving
this problem has significant practical importance, as it enables the identification
of pollution sources and the assessment of their environmental impact. In this
section, we evaluate the effectiveness of PINN using test data generated by FEM
to assess the accuracy and reliability of our model before applying it to real-world
data. We define multiple synthetic scenarios, including cases with constant and
variable winds, different diffusion coefficients, and varying numbers of sources.

To effectively address the inverse problem, we introduced several modifica-
tions to the PINN architecture. The FO-PINN architecture and the sin 2π ac-
tivation function in the first layer were removed as they do not contribute to
solving the inverse problem. The value of λdata in Eq. (10) is set to 10000.

The final model configuration optimized for solving the inverse problem of
the advection-diffusion equation is illustrated in Figure 7.

To identify the unknown source, we treat its coordinates as trainable param-
eters within the neural network. Similar to weights and biases, these parameters
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Fig. 7. Optimized PINN architecture for solving the inverse problem of the advection-
diffusion equation

are iteratively updated using gradient-based optimization during the training
process. An alternative approach would be to include additional outputs in the
neural network and introduce corresponding loss function terms for these out-
puts. However, for the problem considered, this approach yielded unsatisfactory
results and therefore not considered in this paper. In our simulations, the coor-
dinates of the pollution source are initialized either as a randomly selected point
within the computational domain or as its midpoint. During training, PINN sub-
stitutes these parameters into the governing equation and progressively refines
the estimated source location.

In the first scenario, we place a point source at coordinates (4, 4) in the
domain (10, 10) with a diffusion coefficient of k = 0.5, constant wind speeds
u = 0.7 and v = 0.7, and consider a single time instance at t = 3. The Peclet
number for this case is 11.8. Figure 8 presents the loss function plots and how
the estimated coordinates converge towards the target source coordinates during
training. In Figure 9, we present the reference solution obtained using FEM
alongside the PINN solution with the identified pollution source coordinates,
demonstrating a good agreement between the two.

Table 1 provides a comparison between the predicted source coordinates and
the target values, along with the corresponding MSE. During the study, we ob-
served that the number of training epochs had a more significant impact on the
results than the number of collocation points. Our experiments were conducted
for 10000–15000 epochs and 200–5000 collocation points. The results obtained
for 15000 epochs with only 200 collocation points were comparable to those ob-
tained with 10000 epochs and 2500 collocation points. The detailed comparison
is presented in Table 2. This finding is particularly relevant for future studies,
where real-world data availability may be limited to a small number of sensors.
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Fig. 8. The loss function plot and the process of locating the coordinates for t = 3 and
constant wind speed

Fig. 9. Comparison of PINN results with FEM data for t = 3 and constant wind speed

Table 1. Comparison of true source coordinates with predicted coordinates using PINN
for t = 3 and constant wind speed

True coordinates Predicted coordinates MSE
x 4.0 3.979 4.4e-4
y 4.0 3.982 3.2e-4

Table 2. Predicted coordinates for three cases: 1) 10000 epochs, 2500 collocation
points; 2) 15000 epochs, 2500 collocation points; 3) 15000 epochs, 200 collocation points

1 case 2 case 3 case
True

coordinates
Predicted

coordinates
MSE True

coordinates
Predicted

coordinates
MSE True

coordinates
Predicted

coordinates
MSE

x 4.0 4.119 1.4e-2 4.0 4.060 3.5e-3 4.0 4.130 1.7e-2
y 4.0 4.091 8.2e-3 4.0 4.085 7.2e-3 4.0 4.099 9.7e-3

Next, we consider a more complex case involving variable wind speed field
within the time range from 0 and 4. Figure 10 shows the loss function and evo-
lution of source coordinates. This wind speed field is used throughout the paper
unless stated otherwise. Figure 11 shows a comparison between the results of
PINN and the FEM data used for training the network. As we can observe,
compared to the previous case involving a single time instance, the current sce-
nario presents some challenges for PINN. However PINN still accurately predicts
the source coordinates, as shown in Table 3.
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Fig. 10. The loss function plot and the process of locating the coordinates for variable
wind speed, t = 0-4, and diffusion coefficient k = 0.5

Fig. 11. Comparison of PINN results with FEM data for variable wind speed, t = 0-4
seconds, and diffusion coefficient k = 0.5

Table 3. Comparison of true source coordinates with predicted by PINN for variable
wind speed, t = 0-4 seconds, and diffusion coefficient k = 0.5

True coordinates Predicted coordinates MSE
x 4.0 3.885 1.3e-2
y 4.0 4.049 2.4e-3

Next, we consider a similar scenario but with a diffusion coefficient of 10−5,
with the corresponding Peclet number value of 590000. The process of locating
the source coordinates and the training plot are presented in Figure 12. As
the diffusion coefficient decreases, the transport of the substance by the wind
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becomes more pronounced, slightly impacting the performance of PINN in terms
of data learning (Figure 13) and coordinate prediction (Table 4). Despite these
challenges, PINN continues to exhibit high efficiency in accurately determining
the source coordinates.

Fig. 12. The loss function plot and the process of locating the coordinates for variable
wind speed, t = 0-4 seconds, and diffusion coefficient k = 1e-5

Fig. 13. Comparison of PINN results with FEM data for variable wind speed, t = 0-4
seconds, and diffusion coefficient k = 1e-5

Next, we consider a scenario similar to the previous one, but with two sources
located at coordinates (4, 4) and (3, 6). Figure 14 illustrates the process of iden-
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Table 4. Comparison of the true source coordinates with the ones predicted by PINN
for variable wind speed, t = 0-4 sec, and diffusion coefficient k = 1e-5

True coordinates Predicted coordinates MSE
x 4.0 3.793 4.3e-2
y 4.0 4.070 4.8e-3

tifying the source coordinates along with the corresponding loss function. Fig-
ure 15 presents the PINN predictions and their comparison with the reference
data. Table 5 provides a quantitative comparison between the predicted and true
source coordinates.

Fig. 14. The loss function plot and the process of locating the coordinates for two
sources, variable wind speed, t = 0-4, and diffusion coefficient k = 1e-5

Table 5. Comparison of the target coordinates of two sources with the predicted
coordinates by PINN for variable wind speed, t = 0-4 sec, and diffusion coefficient k =
1e-5

True coordinates Predicted coordinates MSE
x1 4.0 3.823 3.1e-2
y1 4.0 4.137 1.9e-2
x2 3.0 2.740 6.7e-2
y2 6.0 6.121 1.5e-2

To validate the proposed approach, we apply PINN to a set of test pollution
source coordinates within the domain (10, 10): (3, 3), (4, 4), (5, 5), (6, 6), (7, 7),
(4, 5), (5, 2), (6, 3), (4, 6), and (2, 4).

To assess the accuracy of the predicted source coordinates, we compare the
coordinates obtained using the PINN-based algorithm with the test coordinates
using the MSE metric.

Параллельные вычислительные технологии (ПаВТ’2025) || Parallel computational technologies (PCT’2025)
agora.guru.ru/pavt

30



Fig. 15. Comparison of PINN results with FEM data for two sources, variable wind
speed, t = 0-4, and diffusion coefficient k = 1e-5

Table 6 presents a comparison between the pollution source coordinates pre-
dicted by the PINN algorithm and the reference test coordinates. The results
indicate that PINN successfully identifies the source locations in over 80% of
the cases, with the error for any correctly predicted coordinate component not
exceeding 10−1.

We obtained robust results across various scenarios, including simple and
complex wind fields, different diffusion coefficient values, and cases with both
single and multiple sources. Additionally, we tested the PINN method on mul-
tiple pollution source coordinates, further confirming its reliability and adapt-
ability. These findings demonstrate the flexibility and accuracy of the proposed
approach.

4.3 Solution of the inverse problem using real data

In this section, we address the solution of the inverse advection-diffusion prob-
lem to determine the coordinates of the substance source, relying on real-world
observation data provided by our industrial partner, which includes data on
hydrogen sulfide concentration as well as wind speed and direction [20]. The
real-world data represents a domain of 20 by 20 km, divided into a 100 by 100
grid with a 200-meter step. In this grid, the target source is located at the coor-
dinate (37,44). To achieve satisfactory results, we increase the number of epochs
and slightly adjust the ratio of the Adam and LBFGS optimizers: 10000 epochs
for Adam and 3000 epochs for LBFGS. To ensure the comparability of MSE
values calculated from different coordinate types (test and real), the nondimen-
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Table 6. Verification results for different test coordinates

№ Test Coordinates Predicted Coordinates MSE Result
1 (3,3) (2.938, 3.193) (3.9e-3, 3.7e-2) 3

2 (4,4) (3.793, 4.072) (4.3e-2, 5.2e-3) 3

3 (5,5) (4.881, 4.845) (1.4e-2, 2.4e-2) 3

4 (6,6) (5.892, 5.639) (1.2e-2, 1.3e-1) 3

5 (7,7) (5.855, 3.929) (1.3, 9.4) 7

6 (4,5) (3.813, 5.167) (3.5e-2, 2.8e-2) 3

7 (5,2) (5.072, 1.865) (5.2e-3, 2.1e-2) 3

8 (6,3) (5.909, 2.801) (8.3e-3, 4.0e-2) 3

9 (4,6) (3.813, 6.103) (3.5e-2, 1.1e-2) 3

10 (2,4) (5.849, 4.010) (15, 9.3e-5) 7 / 3

sionalization procedure is applied. This approach helps to maintain the accuracy
criterion of 1e-1, which is important when comparing model performance across
different scales.

Results of solving the inverse advection-diffusion problem using real data are
presented. Figure 16 shows that the approximate coordinates are determined in
500 epochs, which takes less than 20 seconds. However, to achieve optimal ac-
curacy, the increased training time may not have been sufficient. Increasing the
number of LBFGS epochs to 5000 resulted in NaN values in the loss function,
underscoring the importance of balancing training time and network stability
to avoid overfitting or divergence during the optimization process. Figure 17
demonstrates how PINN adapts to the real data. While some uncertainty is
present in the results obtained by PINN, it does not hinder its ability to locate
the source coordinates, which are sufficiently close to the target values, as shown
in Table 7. As a result of the conducted research, we observe that PINN method
successfully solves inverse advection-diffusion problems, demonstrating high ac-
curacy in determining the source coordinates based on real data. This confirms
its effectiveness and potential for further application in this field.

Table 7. Comparison of true source coordinates with predicted coordinates using PINN

True coordinates Predicted coordinates MSE
x 44.0 44.018 3.2e-6
y 37.0 38.379 1.9e-2

5 Conclusions

In this study, we have explored the application of PINNs for solving the inverse
advection-diffusion problem to localize pollution sources. The PINN solutions
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Fig. 16. Loss curves and coordinate search process for solving the inverse advection-
diffusion problem with real-world data

Fig. 17. Comparison of PINN results with FEM data for real-world data. The max-
imum substance concentration value was limited to 1, ensuring better clarity for the
analysis

have been validated against reference solutions obtained using FEM. To extend
the PINN framework to inverse problems, source coordinates were incorporated
as trainable parameters within the network.

The proposed approach successfully identifies pollution source coordinates us-
ing real-world concentration and wind data, demonstrating its applicability for
environmental monitoring. The accuracy of the method depends on the availabil-
ity of pollutant concentration measurements and wind field data, which can be
obtained from meteorological observations or by solving the Navier-Stokes equa-
tions. Although this study does not address solving the forward Navier-Stokes
problem, future research may focus on integrating PINNs for simultaneous flow
and pollutant dispersion modeling.

Despite their potential, PINNs require careful tuning of architecture and hy-
perparameters, making their application problem-specific and computationally
intensive. While in this work, the optimization of the PINN architecture has been
performed manually, automating this process through systematic guidelines and
global optimization techniques could enhance efficiency and scalability. Future
work will focus on expanding the validation of the approach across diverse at-
mospheric conditions and pollutant scenarios. Enhancing model accuracy while
reducing computational costs remains a key objective. Additionally, transitioning
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from two-dimensional to three-dimensional modeling will enable more realistic
simulations, incorporating factors such as altitude and terrain effects, which are
critical for accurate pollutant dispersion modeling.
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