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We apply supervised deep machine learning techniques to extract properties of the
anisotropic Ising model. We consider two cases of anisotropy: orthogonal and di-
agonal. From the predictions of the neural network, we obtained phase probability
functions, from which we measured two quantities: the critical temperature and the
critical exponent of the correlation length. We estimated the values of the anisotropy
parameter in both cases at which the neural network predictions correctly reproduce
the critical behaviour. When the anisotropy is significant, the neural network predicts
phases incorrectly. We attribute this to a change in the behaviour of the correlation
function. For example, in the case of diagonal anisotropy, these are oscillations of the
correlation function that lead to significant deviations in the predictions.
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1. Introduction

Machine learning methods have been widely applied in recent decades in tasks requiring
the processing of large amounts of data, including the study of statistical physics systems char-
acterised by an extensive phase space. For example, the research in [1] focused on extracting
information about the second-order phase transition in the Ising model. The authors formulated
a classification problem for a neural network where the phase transition occurs between ferro-
and paramagnetic phases representing two classes. By analysing the probability distribution of
these phases, it is possible to estimate the critical transition temperature and some universal
properties of the Ising model.

Models with the same dimensionality, symmetry, and degeneracy of the ground state form
universality classes, and in the critical region models from the same class have identical proper-
ties. Using machine learning, it is possible to identify the properties of a particular universality
class to which the model in question belongs [2]. It is known that the correlation length growth
rate that diverges at the point of phase transition of the second kind [3], can be estimated using
a neural network method. This leads to the question of the feasibility and accuracy of using such
an approach to estimate the critical correlation length exponent for other models from similar
universality classes. Realising this requires using the knowledge gained during training of the
neural network on new data.

Traditional approaches to extract properties of spin models are Monte Carlo class methods:
cluster algorithms (Wang-Landau [4], Wolff [5])and multicanonical algorithms [6]. Spin models
have also been investigated by machine learning methods [1,7,8], and there are papers on transfer
learning between different universality classes [9]. But to the best of authors’ knowledge, no one
has investigated the impact of transfer of learning in a single universality class.

We focus on transfer learning in one universality class. For this purpose, we train a convolu-
tional neural network on samples of isotropic Ising model, and then we test the already trained
network on anisotropic samples. Anisotropy in the system arises due to changes in the coupling

*This paper is the result of a research project implemented as part of the fundamental research programme of
the National Research University Higher School of Economics (HSE).
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Figure 1. Spin o; ; and its nearest neighbours of the Ising model on a triangular lattice

constants between spins. We consider two cases of anisotropic interactions: in the first case, the
anisotropy parameter is the ratio of the magnitude of the vertical bond to the horizontal bond on
a square lattice. In the second case, the vertical and diagonal links are equal, and the parameter
is the ratio of the magnitude of the diagonal link to the horizontal link on a triangular lattice.
Thus, we verify the accuracy with which universal properties of the system can be extracted
using neural network analysis.

2. Methods
2.1. Models under study

For studying transfer learning applicability, we consider the Ising model on triangular lattice
(Fig. 1):

L
H=—>_ 0ij [Jn0it1,+Jo0ij+1+Ja0it1 j41] - (1)
ij=1

Here the parameters J,,, Jp, Jg are the coupling constants on the vertical, horizontal and
diagonal respectively, L is the system size.

When J, = Jp, Jg = 0, it is the isotropic Ising model in a square lattice with the Z4 symmetry
of a lattice. Respectively, if we vary coupling constants, symmetry is broken and the system
becomes anisotropic.

We consider two cases of anisotropy, in each of which the spatial Zo symmetry is preserved:

o J,=Jy=J=1, kK =Jg/J # 0 — diagonal anisotropy
e J; =0, kg = J,/Jy #1 — orthogonal anisotropy

Each instanton of the Ising model exists at its own temperature T', depending on which the
system can be in an ordered (ferromagnetic) or disordered (paramagnetic) state. Orderedness
is characterised by spontaneous magnetisation in the absence of an external magnetic field.

2.2. Neural network output

We feed the instantaneous samples (snapshots) of the model 1 to a convolutional neural
network (see ‘Neural network pipeline’ section) and train the network to solve the classification
problem.
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In the Ising model, a phase transition of the 2nd kind between the ferromagnetic and
paramagnetic phases is observed at the critical point 7., also known as the phase transition
temperature. The phase transition temperature of this model is known from the analytical
solution [10]:

Ja 2Jy

sinh 2Jy sinh 2Jn + sinh 2Jn sinh 2J4 + sinh 2 sinh

=1 2
kBTC kBTc kBTc kBTc kBTc kBTc ’ ( )

Jop+Jp >0, Jp+Jg >0, Jg+ J, > 0.

Knowing T.(Jy, Jn, Jg), we divide all data into two classes: 0 — ferromagnetic (7' < T),
1 — paramagnetic (T" > T,). After that, we train the neural network to separate the incoming
data into two classes.

The output of the neural network is p;(7'; L) — the probability of a sample i with temper-
ature 7" and size L x L to be in the paramagnetic phase. Having obtained the predictions for
N samples, we construct the paramagnetic phase probability functions P(7’; L) 3 and the second

moments of this function D(T; L) 4:

1 N
P(T; )= Z:pi(T; L), (3)
1 Y 1Y ?
D(T; L)= Nz(pi(T;L))Q— (szi(T;L)> : (4)

2.3. Temperature estimation

We build functions P(T; L) and D(T'; L) for several lattice sizes and over a given temperature
range estimate the phase transition temperature 7, found by the neural network: the distri-
bution D(T; L) at each L is approximated by a Gaussian function with mean g and standard
deviation 0. We consider T, = p(L) as an estimate of the critical temperature.

All estimates are generated by testing the neural network on finite grid dimensions L. We
then make an estimate of the corresponding temperature in the thermodynamic limit based on
the shift of the critical temperature in finite dimensions T, (oc0) = T, (L) + a/L.

84



2.4. Critical exponent estimation

It is known [3] that in the universality class of the two-dimensional Ising model, the correla-
tion length ¢ diverges at the phase transition point: §o<7*1/ Y with critical exponent v = 1, and
7=(T—-1T.)/T, is the reduced temperature.

We find an estimate of the exponent v using the hypothesis [2] that the width of (L) at
finite lattice sizes behaves in the same way as the width of thermodynamic functions [11,12]:

o(L)xbL ™",

3. Neural network pipeline

The data are generated using the Metropolis algorithm, with each time point being a black
and white image or snapshot. The thermalization time is 20 x L?!® [13]. Once equilibrium is
reached, each snapshot is saved in every 2 x L?*!® Monte Carlo step, corresponding to L x L
local spin flips.

Fach data set is created in the range T, £ 0.3, comprising 100 temperature points uniformly
distributed in increments of 6 x 1072, The value of T, varies with J, according to the formula 2.
For each temperature 1" in the specified range, we store N = 2048 snapshots under isotropic
sampling, where J, = J, = 1. In the case of generating anisotropic datasets when J, # Jj, we
only store N = 512 snapshots. As a result, each dataset contains N x 100 images.

We use a convolutional neural network (CNN) architecture, which includes one convolutional
layer, two fully connected layers, and ReLU activation between them [2]. We train neural
networks within one epoch to avoid overtraining [14].

The neural networks are trained on isotropic samples with parameters J; =0, J, = J, = 1.
The pre-trained networks are then tested on each test sample: in the case of diagonal anisotropy,
we vary the parameter k1 from —0.7 to 1.0 inclusive in steps of 0.1; J, = Ji = 1; in the case of
orthogonal anisotropy we change the parameter xo: 1, 3/4, 1/2,1/8, 1/16; J; = 0.

4. Results

As described above, we estimated the phase transition point 7 and the critical expo-
nent 1/v for different anisotropy parameters x; and k2. The results of the critical temperature
estimation are shown in the graphs 4, the 1/v estimates are collected in the Tables 1-3 and
depicted in the graphs 5.

In the results of estimation of both quantities there is a systematic deviation from theoretical
values: growth of the relative error of critical temperature and deviation of critical exponent 1/v
from the theoretical value of 1. Such an effect is observed when: k1 < —0.5; ko < 1/4.

Table 1. Estimates of the critical exponent of correlation length v obtained from analysing the width
o(L) of the function D(T; L): the second line is full width, the right half-width o,.(L) of this function is
the third line, the left half-width o;(L) is the fourth line; k1 € [—0.7,0.0]

K1 -0.7 -0.6 -0.5 -0.4 -0.3 —0.2 -0.1 0.0

11°0.52(15) | 0.68(9) | 0.88(10) | 1.02(5) | 1.06(2) | 1.07(4) | 1.11(2) | 1.09(2)

On a triangular lattice with diagonal anisotropy, we observe a deviation of the critical tem-
perature and correlation length exponent when k; < —0.4. For example, at —0.4 < k1 < 1.0
the temperature estimates (L) lie on a curve corresponding to the normalised critical temper-
ature known analytically [15] (Fig. 6a). As the parameter x; decreases, the critical temperature
decreases accordingly and the phase diagram shifts towards the region containing the disorder
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Figure 4. Relative error of the critical temperature estimate T, : a) k1 € [—0.7,1.0], b)ke = 1/16,...,1

Table 2. Estimates of the critical exponent of correlation length v obtained from analysing the width
o(L) of the function D(T; L): the second line is full width, the right half-width o,.(L) of this function is
the third line, the left half-width oy(L) is the fourth line; k1 € [0.1,1.0]

K1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X[

1.11(5) | 1.11(5) | 1.10(5) | 1.08(3) | 1.11(5) | 1.07(5) | 1.06(5) | 1.09(3) | 1.09(4) | 1.08(7)

Table 3. Estimates of the critical exponent of correlation length v obtained from analysing the width
o(L) of the function D(T;L): the second line is full width, the right half-width o,.(L) of this function is
the third line, the left half-width o;(L) is the fourth line; ko = 1/16, ...,1.0

ko | 1 3/4 1/2 1/4 1/8 1/16

=

1.10(3) | 1.07(4) | 1.03(3) | 1.06(4) | 0.87(7) | 0.66(11)

temperature. In this region, pairwise correlated spin oscillations are observed in the system,
which arise due to the diagonal antiferromagnetic interaction. During training, the neural net-
work was fed with data that did not contain such oscillations, so the results of the estimation
of the quantities of interest deviate from the theoretical values in the same regions.

As for the orthogonal anisotropy, we assume that the deviations at small parameters ko are
due to the peculiarities of the correlation function in this region. In [16], a decomposition of the
correlation function < oggo;; > over radially measured distance R was obtained (sign + or —
stands for temperature region: greater or less than T¢):

< o000ij >= Fi(t)/RY* + Fyo(t)/RY* 4+ o(R™/%). (5)

Here R is the radial radius, in the isotropic case R = Lv/2; t is the reduced temperature in
variables z1 = tanh 8Jp, 22 = tanh 8J,:

R.

}1/4 ©)

t=|z122+ 21 + 290 — 1] {2122(1 — 21— 23)

For example, we construct the ratio R;:
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Figure 5. Estimation of the critical correlation length exponent (1/v)_: black squares, 1/v, full
width; red triangles, (1/v),, right half-width; green stars, (1/v);, left half-width; a) x; € [—0.7,1.0],
b) ko = 1/16, ..., 1

Fig. 6b repeats Fig. 2 from the paper [16], and at the points k2 = 1/8,1/16, an increase in
the R; ratio is noticeable. This means that in samples at lower temperatures than 7, possessing
orthogonal anisotropy, the influence of the correction term F: 1_(t)R_5/ 4 increases, which affects
the spatial behaviour of the correlation function, which is also not taken into account when
training the neural network.
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Figure 6. a) Estimations of critical temperature 7, on the same plot with precise critical temperature
from paper [15]; b) ratio 7 vs anisotropy parameter ko

5. Discussion

In this work, we investigated the applicability of transfer learning within one universality
class of the two-dimensional Ising model. We trained a convolutional neural network to discrim-
inate between the two phases of an isotropic model, and then tested the pre-trained network
on anisotropic samples. From the predictions of the network, we extracted estimates of the
critical temperature and the critical correlation length exponent. The results showed that we
estimate both quantities according to their theoretical values (within the statistical error) when
transferring the training, but the region of correctness is limited.
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The hypothesis is that at strong anisotropy there are non-trivial effects related to spatial
oscillations occurring in the system. In the case of diagonal anisotropy, antiferromagnetic diag-
onal interactions are influential, leading to frustrations due to the unattainability of the ground
state. In the case of orthogonal anisotropy, the increase of correction term in the correlation
function leads to a different behaviour on the short scales, limiting the applicability of transfer
learning. Further work on this problem will consist in testing the hypotheses put forward.
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